Кислород технический: производство, эксплуатация и применение в промышленности. Что потребуется для реализации? Пошаговая инструкция запуска

Кислород технический: производство, эксплуатация и применение в промышленности. Что потребуется для реализации? Пошаговая инструкция запуска

Еще со школьного курса химии известно, какой элемент является самым распространенным на нашей планете. Поэтому неудивительно, что кислород технический имеет широкое применение во многих сферах жизнедеятельности. В частности, некоторые технологические операции, которые связанны с металлообработкой, осуществляются при непосредственном участии этого газа.

Общие сведения

Химический элемент O (лат. Oxygenium (Оксиген)) входит в состав большого количества соединений. Его массовая составляющая в земле равняется 50%, в воде – 86%, в воздухе – 23%. В нормальных условиях – это газообразное вещество, не обладающее цветом и запахом, а также активно поддерживающее горение. При температуре -182,97°C и нормальном атмосферном давлении технический кислород переходит в жидкую фазу, а при -218,4°C кристаллизуется. При этом масса 1 л жидкости составляет 1,13 кг.

Поскольку оксиген обладает высокой химической активностью, он легко входит в реакцию практически со всеми элементами. Исключение составляют лишь инертные вещества. Например, аргон, широко применяемый в сварочном процессе, о котором можно прочитать в статье: газ аргон – химические свойства и сфера применения .

Кислород является самым распространенным элементом на планете

Способы производства

Существует два основных метода получения чистого O2:

  • Из воздуха : на начальном этапе воздух очищается от мелких примесей и влаги посредством многоступенчатого компрессора и воздушных фильтров. Следующим этапом является сжижение и последующее разделение O2 и N2 (жидкий азот закипает при -196°C, поэтому при медленном увеличении температуры он испаряется раньше).
  • Из воды : через дистиллированную воду пропускают ток (реакция электролиза), в результате чего происходит разделение: 2H2O → 2H2 + O2. Учитывая то, что абсолютно чистая вода – это диэлектрик, перед подачей тока в нее добавляют электролиты (KOH, NaOH).

«Воздушный» метод считается наиболее выгодным. Чтобы получить кислород технический в объеме 1 м³ данным способом, расходуется порядка 0,5-1,5 кВт/ч электричества. Тогда как для электролиза требуется 10-20 кВт/ч.

На рисунке изображен «воздушный» способ получения

Хранение, транспортировка и меры предосторожности

Для хранения и перевозки O2 используются баллоны, имеющие голубой окрас и характерную надпись черного цвета. Вентиль изготавливается из латуни и снабжен правой резьбой. При этом арматура должна постоянно проверяться на исправность и герметичность. Хранится подобная тара в специально оборудованных складских помещениях или на открытом воздухе под навесом, который осуществляет защиту от солнечных лучей и осадков.

Перевозить кислородные баллоны необходимо на рессорном транспорте или автокарах, соблюдая горизонтальное положение. Хотя в некоторых случаях допускается вертикальное положение при перевозке, но только при наличии специального приспособления, которое исключает любые удары и падения.

В процессе эксплуатации во избежание опасных ситуаций следует придерживаться следующих мер безопасности:

  • Хотя сам по себе газ не горюч и не взрывоопасен, он поддерживает активное горение других веществ, поэтому для работы с ним должны применяться лишь разрешенные материалы.
  • При контакте с маслянистыми субстанциями происходит мгновенная реакция окисления, что может привести к воспламенению или даже взрыву.
  • С целью минимизации вероятности пожаров концентрация O2 в помещениях должна быть не более 23%.
  • Запрещается использовать кислородные сосуды и трубопроводы для хранения и транспортировки горючих веществ.

Так точно нельзя обращаться с баллонами, заправленными газом

Кислород технический для газопламенной обработки металла

Это важнейший элемент для сварочного процесса и резки металлических изделий. При его сжигании образуется пламя, которое может достигать 3000°C, что позволяет осуществлять сварку многих металлов. Для газопламенной обработки кислородное содержание газа должно быть не менее 99,2-99,5%. При более низкой чистоте уменьшается качество обработки и увеличивается расход. Хотя для нетребовательных видов сварки можно использовать концентрацию в пределах 92-98%.

Во время сварочных операций и резки газ подается из баллонов, специализированных установок или автономных станций. При больших объемах его целесообразнее и безопаснее хранить в жидком состоянии. Однако, в таком случае придется дополнительно использовать газификационные установки, реализующие переход жидкой фазы в паровую.

Так выглядит металл, который подвергается резке с использованием кислорода

При испарении 1 л O2 образуется 860 дм³ газа. Для сравнения, при испарении такого же количества углекислоты образуется 506 дм³ газа. Кстати, об особенностях эксплуатации CO2 можно прочитать в статье: углекислота: где заправить – вопрос не праздный .

Другое применение в промышленной сфере

Газопламенная обработка – это не единственное сфера использования О2 в металлургической промышленности. Он используется как вспомогательный газ для лазерной и плазменной резки, добавляется в незначительных количествах в защитные смеси для повышения производительности и уменьшения пористости сварочного шва, применяется для резки копьем и др.

Информацию по другим техническим газам вы найдете в этом разделе нашего блога.

Заправить кислородные баллоны можно в компании «Промтехгаз». После заказа, вам своевременно доставят заправленные сосуды, обменяв их на пустую тару.

Для получения технически чистого кислорода воздух подвергается глубокому охлаждению и сжижается (температура кипения жидкого воздуха при атмосферном давлении - 194,5°). Полученный жидкий воздух подвергается дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) в температурах кипения жидких азота (-196°) и кислорода (-183°).

Воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени компрессора (на фигуре изображён четырёхступенчатый компрессор). За каждой ступенью компрессора давление воздуха возрастает и доводится до 50-220 атм в зависимости от системы установки и стадии производства. После каждой ступени компрессора воздух проходит влагоотделитель, где осаждается вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Между второй и третьей ступенями компрессора для поглощения углекислоты из воздуха включается аппарат - декарбонизатор, заполняемый водным раствором едкого натра. Сжатый воздух из компрессора проходит осушительную батарею из баллонов, заполненных кусковым едким натром, поглощающим влагу и остатки углекислоты. Возможно полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубки кислородного аппарата сравнительно малого сечения и заставляют прекращать работу установки, останавливая её на оттаивание и продувку кислородного аппарата.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый кислородный аппарат, где происходит охлаждение и сжижение воздуха и его ректификация с разделением на кислород и азот. Нормальный кислородный аппарат включает две ректификационные колонны, испаритель, теплообменник, дроссельный вентиль. Сжатый воздух охлаждается в теплообменнике отходящими из аппарата кислородом и азотом, дополнительно охлаждается в змеевике испарителя, после чего проходит дроссельный вентиль, расширяясь и снижая давление. Вследствие эффекта Джоуля-Томсона температура воздуха при расширении резко падает и происходит его сжижение.

Жидкий воздух испаряется в процессе ректификации, процесс испарения и отходящие газообразные продукты ректификации - азот и кислород - охлаждают новые порции сжатого воздуха, поступающего из компрессора, и т.д. Газообразный азот чистотой 96-98% обычно не используется и из теплообменника выпускается в атмосферу. Газообразный кислород чистотой 99,0-99,5% направляется в резиновый газгольдер, откуда засасывается кислородным компрессором и подаётся для наполнения кислородных баллонов под давлением 150 атм.

Установка работает непрерывно круглосуточно до замерзания аппарата или появления каких-либо неисправностей, требующих остановки для ремонта. По замерзании аппарата работа прекращается и начинается период отогрева аппарата тёплым воздухом, подаваемым компрессором. По окончании отогрева производятся продувка аппарата, необходимый текущий ремонт, и установка готова к новому пуску.

Полный производственный цикл установки называется кампанией, нормальная продолжительность которой около 600 час, из них полезной работы с выдачей кислорода 550-560 час. В пусковой период, когда требуется интенсивное охлаждение аппарата и скорейшее создание запаса жидкого воздуха, компрессор подаёт воздух под давлением около 200 атм, когда же устанавливается нормальный ход процесса, расход холода уменьшается и рабочее давление компрессора снижается до 50-80 атм. Сказанное относится к получению из аппарата газообразного кислорода, который уносит с собой немного холода из аппарата, отдавая большую часть холода в испарителе и теплообменнике аппарата. В настоящее время часто значительная часть кислорода отбирается из аппарата в жидком виде. С жидким кислородом, имеющим температуру -183°, из аппарата уносится много холода, и для возможности нормальной работы установки необходимо усилить охлаждение системы. Это достигается двумя путями: 1) повышением рабочего давления воздушного компрессора; 2) совершением внешней работы при расширении воздуха.

При работе установки для получения жидкого кислорода рабочее давление воздушного компрессора поддерживается около 200 атм. на протяжении всей кампании, вместо 50-80 атм., достаточных для производства газообразного кислорода. При производстве жидкого кислорода сжатый воздух из компрессора разделяется на два примерно одинаковых потока, один из которых направляется непосредственно в кислородный аппарат, как было описано выше, другой же предварительно поступает в специальную поршневую машину, так называемую расширительную машину или детандер. В детандере поступающий сжатый воздух расширяется, совершая внешнюю работу, и снижает давление с 200 до 6 атм. Расширение в детандере с совершением внешней работы охлаждает воздух значительно сильнее, чем расширение в дроссельном вентиле кислородного аппарата за счёт эффекта Джоуля-Томсона. Воздух охлаждается на выходе из детандера примерно до -120° и поступает в кислородный аппарат, смешиваясь с частью воздуха, поступающего в кислородный аппарат помимо детандера. Указанные изменения позволяют непрерывно отбирать жидкий кислород из аппарата без нарушения процесса производства.

Транспортирование и хранение кислорода

Производство кислорода из воздуха ведётся непрерывно круглосуточно, в малых масштабах оно нерентабельно. Обычно лишь предприятия с большим потреблением кислорода, не менее 400 - 500 м 3 в сутки, могут иметь собственные кислородные установки, основная же масса потребителей со средним и малым потреблением кислорода получает его со специальных кислородных заводов. Поэтому существенное значение приобретает транспорт и хранение кислорода, часто обходящиеся дороже его производства. Кислород обычно хранится и транспортируется в газообразном виде в стальных баллонах под давлением 150 атм.

Кислородный баллон представляет собой цилиндр со сферическим днищем и горловиной для крепления запорного вентиля. На нижнюю часть баллона насаживается башмак, позволяющий ставить баллон вертикально. На горловину насаживается кольцо с резьбой для навёртывания защитного колпака. Горловина имеет внутреннюю коническую резьбу для ввёртывания вентиля.

По ГОСТ баллоны изготовляются из стальных цельнотянутых труб углеродистой стали с пределом прочности не ниже 65 кг/мм2, пределом текучести не ниже 38 кг/мм2 и относительным удлинением не ниже 12%. Кислородные баллоны изготовляются для разных целей ёмкостью от 0,4 до 50 л. В сварочной технике применяются главным образом баллоны ёмкостью 40 л. Такой баллон имеет наружный диаметр 219 мм, длину корпуса 1390 мм, толщину стенки 8 мм; весит баллон без кислорода около 67 кг.

Баллоны из углеродистой стали для рабочего давление 150 атм имеют вес тары 1,6-1,7 кг! л ёмкости, В последнее время начато освоение баллонов из легированных сталей с пределом прочности 100-120 кг/мм2, что даёт возможность повысить рабочее давление баллонов и снизить их вес в 2-2,5 раза для той же ёмкости и рабочего давления. Чтобы избежать опасных ошибок при наполнении и использовании, баллоны для разных газов окрашиваются в различные цвета, кроме того, присоединительный штуцер запорного вентиля имеет различные размеры и устройство. Кислородные баллоны окрашиваются снаружи в голубой цвет и имеют надпись чёрными буквами кислород. Через каждые пять лет кислородный баллон подвергается обязательному испытанию в присутствии инспектора Котлонадзора, что отмечается клеймом, насекаемым на верхней сферической части баллона. Производится также гидравлическое испытание на полуторное рабочее давление, т.е. на 225 атм. Вентиль кислородного баллона изготовляется из латуни. Присоединительный штуцер вентиля имеет правую трубную резьбу 3/4, Во время хранения вентиль защищается предохранительным колпаком, который навёртывается на наружное кольцо горловины баллона. Баллон, заполненный кислородом под давлением 150 атм, при нарушении правил обращения с ним может дать взрыв значительной разрушительной силы. Поэтому при обращении с кислородными баллонами необходимо строго соблюдать установленные правила безопасности. В особо ответственные или опасные цехи рекомендуется вообще не вносить кислородных баллонов, а располагать их вне цеха в отдельной пристройке, и подавать в цех по трубопроводу редуцированный кислород пониженного давления, обычно 10 атм.

Простейшая пристройка в форме железного шкафа у наружной стены. Обычно в цехе не должно находиться одновременно более 10 баллонов. В цехе баллоны должны прикрепляться хомутом или цепью к стене, колонне, стойке и т.п. для устранения возможности падения. На территории завода баллоны нужно переносить на носилках или лучше перевозить на специальных тележках; переносить баллоны на руках или на плечах запрещается. При перевозке баллонов на автомашинах или подводах необходимо обязательно применять деревянные подкладки, устраняющие перекатывание и соударения баллонов. Погрузка и выгрузка баллонов должны производиться осторожно, без толчков и ударов. Баллоны необходимо защищать от нагревания, например от печей, вызывающего опасное повышение давления газа в баллонах.

Для возможности пользования жидким кислородом необходимы: 1) транспортный танк для перевозки жидкого кислорода, установленный на автомашине, обычно принадлежащий кислородному заводу; 2) газификатор, служащий для превращения жидкого кислорода в газообразный и устанавливаемый обычно у потребителя кислорода.

поликристаллический кислород полупроводниковый кремний

Процесс получения кислорода происходит следующим образом. Воздух, засасываемый компрессором, проходит через фильтр, заполненный кольцами Рашига, смоченными висциновым маслом, и очищенный от механических примесей и пыли поступает в первую ступень компрессора. Воздух после каждой ступени компрессора проходит промежуточные холодильники с маслоотделителями. В верхней части декарбонизатора находится сепаратор, в котором воздух освобождается от щелочного раствора, а затем направляется в щелочеуловитель, где выпадают капельки щелочи, уносимой воздухом из декарбонизатора. Далее воздух сжимается последовательно в третьей и четвертой ступенях компрессора.

Кислородный цех специализируется на выпуске технических газов: кислорода, аргона, жидкого азота, сжатого воздуха. Готовая продукция цеха поставляется в баллонах, специальных транспортных цистернах и автомобильных установках в соответствии с требованиями к перевозке опасных грузов.

Продукцией кислородного цеха обычно обеспечивают потребность того предприятия, в состав которого входит цех. Если же кислород отпускают другим потребителям и он является основной товарной продукцией, то в этом случае организуют самостоятельное предприятие, являющееся кислородным заводом.

Всякие простои и перерывы в процессе получения кислорода ведут к нарушению нормального режима работы кислородной установки, способствуют более быстрому замерзанию аппарата, вызывают дополнительные потери времени на восстановление режима и пр.

Основные характеристики установки

Тип воздухоразделительной установки- схема с частичным производством под давлением с криогенным насосом. Производительность составляет 1908 т/д, а производство жидкости составляет 47 т/д воздуха.

Энергоресурсы, подающиеся на установку: влажный воздух, охлаждающая и подпиточная воды, электричество, технический газообразный воздух (только для пуска) и продувочный газообразный азот.

Энергоресурсом, поступающим из установки, является технический газообразный воздух.Продуктами производства являются: газообразный кислород низкого давления, газообразный кислород высокого давления, жидкий кислород, газообразный азот среднего давления, газообразный азот низкого давления, жидкий азот, жидкий аргон, смесь He-Ne, смесь Kr-Xe и воздух КИП.

Общие данные

Воздух подается на границу проектирования от существующих воздушных компрессоров. Установка по производству кислорода содержит один блок разделения воздуха с блоком комплексной очистки воздуха и системой предварительного охлаждения. Схема процесса основана на принципе частичного внутреннего цикла сжатия. Процесс и технология соответствует самой передовой и образцовой международной практике.

Предложенная воздухоразделительная установка может быть в основном разделена на следующие технологические единицы:

1 концевой холодильник

1 технологическая воздушно/водяная башня с холодильной машиной 1/2/3), азотно/водяная башня и насосы воды

1 блок очистки воздуха с двойным слоем алюмината и молекулярных сит

1 воздушный бустер компрессор

1 электрический регенерационный

1 комплект холодных блоков для разделения N2/O2/Ar в основном включающих:

1 линию теплообменников;

1 турбодетандер с бустером и концевым холодильником;

1 конденсатор сырого аргона;

1 переохладитель жидкости;

1 He/Ne конденсатор;

1 конденсатор чистого аргона;

1 испаритель чистого аргона;

1 испаритель;

1 Kr/Xe испаритель;

2а насоса жидкого кислорода;

2а насоса жидкого кислорода;

1 насос жидкого кислорода;

1 насос сырого, жидкого аргона;

2а фильтра кислорода.

1 колонна среднего давления;

1 колонна низкого давления;

1 колонна чистого азота;

1 колонна смеси сырого аргона;

1 колонна чистого аргона;

1 колонна бедной смеси Kr/Xe;

1 колонна He/Ne.

В дополнение установка включает в себя следующее дополнительное оборудование:

КИП и Система Управления

нагреватель для отогрева;

Хранилища для жидкого кислорода, жидкого азота, жидкого аргона и станцию наполнения баллонов.

Кислородный цех является производственно - структурной единицей энергетического производства ОАО «НЛМК». В составе кислородного производства имеются две компрессорные станции для обеспечения цехов комбината сжатым и осушенным сжатым воздухом.

Кислородный цех имеет право на осуществление деятельности по:

  • 1. Эксплуатации производства по получению, переработке, хранению и применению продуктов разделения воздуха.
  • 2. Монтажу и пуско-наладке металлургических и коксохимических производств и объектов.
  • 3. Ремонту агрегатов и оборудования металлургических и коксохимических объектов.
  • 4. Эксплуатации взрывоопасных производственных объектов.
  • 5. Осуществлению деятельности по обращению с опасными отходами.
  • 6. Деятельность природоохранной направленности (утилизация, складирование, перемещение, размещение, захоронение, уничтожение промышленных и иных отходов).

В состав кислородного производства входят:

В настоящее время в цехе заканчивается техническое перевооружение. Практически все оборудование является новым, высокопроизводительным, управляемым с помощью компьютеров. На воздухоразделительных установках работают специалисты с высшим образованием. Вся информация о работе блока выведена на компьютеры.

Воздух из атмосферы, через фильтры, всасывается компрессорами и сжимается до 6 кгс/см 2 , с последующей подачей в ВРУ для получения продуктов разделения (ПРВ), азота, кислорода, аргона, смеси инертных газов (криптоно-ксеноновый концентрат), неоногелиевой смеси (технического неона), и далее подаются потребителям ПРВ.

Кислород технический чистотой 99,5% давлением до 1,9 МПа используется при выплавке стали в кислородно-конвертерных цехах (ККЦ).

Кислород технологический чистотой 95% с давлением 400 мм вод. ст - для интенсификации доменного производства чугуна, обогащение доменного дутья до 30-40% кислородом, позволяет улучшить тепловой баланс плавки, увеличивается производительность печей.

Азот 99,999% потребляют листопрокатные цехи (ЛПЦ-2; ЛПЦ-3; ЛПП; ЛПЦ-5), огнеупорный цех, ККЦ-1, ККЦ-2, газовый цех.

Азот 98% - для продувки межконусных пространств в доменном процессе (ДП-6), на УСТК (КХП), ККЦ-1 и ККЦ-2.

Аргон - для продувки в процессе разливки специальных высококачественных марок сталей для удаления растворенных газов (ККЦ-1, ККЦ-2). Аргон на сторону отпускается в жидком и газообразном виде.

Кислородное производство обеспечивает цехи и производства комбината кислородом для автогенных нужд и сжатым воздухом. На сторону отпускается кислород жидкий и газообразный, криптоно-ксеноновый концентрат, неоногелиевая смесь.

Cтраница 1


Кислородные производства оснащены сложной техникой, обслуживание которой можно доверить лишь персоналу, имеющему соответствующее техническое образование и широкий профиль подготовки. Например, машинисты компрессоров долж - х ны знать не только оборудование, относящееся к компрессорной группе, но и аппараты разделения газовых смесей, а аппаратчики кроме аппаратов разделения газов должны уметь обслуживать и компрессорное оборудование.  

Кислородное производство оснащено сложным быстроходным оборудованием значительной мощности, которое работает непрерывно в широком интервале температур, при различных давлениях, в неблагоприятных условиях, подвергаясь в ряде случаев действию агрессивных сред, что естественно ускоряет разрушение и выход из строя оборудования.  

Современные кислородные производства являются энергоемкими и широко используют для технологических, силовых и хозяйственных потребностей электрическую и тепловую энергию. Кроме того, производство кислорода связано с расходом значительных количеств воды.  

Развитие кислородного производства, повышение его эффективности в решающей степени определяются техническим прогрессом, который предусматривает внедрение новой техники, прогрессивной технологии, научной организации труда и производства. Технический прогресс является основой повышения производительности труда и качества продукции, снижения издержек производства, улучшения условий труда, повышения квалификации и культурно-технического уровня работников. Направления и темпы развития технического прогресса в кислородном производстве определяются общегосударственным планом технического развития.  

Для кислородного производства характерны различные степени механизации и автоматизации производства. Например, производственный процесс является частично механизированным, если механизированы лишь отдельные (обычно основные) операции. В случае механизации всех основных и вспомогательных трудоемких операций при помощи взаимной системы машин и оборудования, характеризуемой наивысшими возможными в данных условиях технико-экономическими показателями, производственный процесс является комплексно механизированным.  

Отходы кислородного производства (масляная эмульсия) должны собираться и также регенерироваться.  

В кислородном производстве под влиянием определяющей тенденции технического прогресса - автоматизации и механиза-ции Производственных процессов - неуклонно возрастает энерговооруженность труда при одновременном сокращении обслуживающего персонала.  

В кислородном производстве ведущим является цех разделения воздуха, так как мощность других цехов или участков, например аргонного цеха, участка по производству криптона или других редких газов, получаемых при разделении воздуха. Ведущим участком в цехе будет тот, который играет решающую роль в выполнении производственной программы цеха. Например, в цехе разделения ведущим является участок блоков разделения. Ведущим оборудованием считается то, на котором выполняются основные операции технологического процесса, определяющие специализацию и масштаб производства или операции с наибольшей трудоемкостью. В кислородном производстве ведущим оборудованием является блок разделения воздуха.  

В кислородном производстве при поставках готовой продукции большому числу потребителей важное значение имеет постоянство потребителей продукции, так как частая их смена может дезорганизовать производство и привести или к простоям оборудования, или к выбросу готовой продукции в атмосферу из-за отсутствия дополнительных емкостей для хранения газов у кислородного завода или у потребителя.  

На кислородных производствах различают сплошной и периодический контроль показателей работы установок разделения воздуха. Сплошной контроль осуществляется с помощью соответствующих автоматических (самозаписывающих) устройств для измерения расхода разделяемого газа и готовой продукции, температур и давлений в определенных точках технологического процесса, определения состава газов, контроля уровня жидкости.  

В кислородном производстве на выполнение плана главным образом влияет степень использования установок разделения воздуха по времени и производительности.  

В кислородном производстве значительное применение находят также приборы, предназначенные для периодического контроля работы оборудования, качества вспомогательных материалов или для определения причин тех или других временных нарушений нормального режима. Эти приборы обычно находятся в распоряжении цеховой лаборатории или мастера по КИП.  

В кислородном производстве в качестве хладоагента для охлаждения и сжижения воздуха наиболее часто применяется тот же воздух. При расширении воздух заметно охлаждается.  

В кислородном производстве используют несколько сортов смазочных материалов.  

В кислородном производстве представляется целесообразным автоматически производить вычисление следующих показателей: коэффициентов расхода электроэнергии на отдельные газы при комплексном разделении газовых смесей, КПД оборудования, время вывода оборудования на отогрев и ремонт, что позволит систематически контролировать производственный процесс и использовать в качестве оптимального показателя себестоимость продукции. При этом следует учесть то обстоятельство, что в себестоимости газов наибольший удельный вес занимают затраты на энергию, которая - является основной переменной величиной, а остальные затраты остаются постоянными или изменяются незначительно. Поэтому при автоматическом расчете себестоимости продукции затраты энергии вычисляются машиной по поступающей в нее информации, а остальные затраты вводятся в машину как неизменная составляющая. Выданные машиной технико-экономические показатели сравниваются с плановыми, и при наличии отклонений выдаются рекомендации по изменению основных параметров производственного процесса.  



Похожие публикации

Бизнес магия и секреты продаж Магия в бизнесе и карьере
Главный инженер: обязанности
Основа операторского фотомастерства: умение видеть и выбирать
Снегурочка (русская народная сказка)
Анализ существующей системы управления материальными потоками
Образец резюме ветеринара
Как члену строительного кооператива оформить земельный участок для строительства индивидуального жилого дома, образованный путем раздела земельного участка, предоставленного жск Процесс возведения жил
В каких случаях нельзя уволить сотрудника
Курс лекций по дисц. общий менеджмент. Основы менеджмента - краткое изложение Менеджмент в профессиональной деятельности лекции
Мероприятия по совершенствованию организации деятельности службы приема и размещения Проблемы внедрения
 информационных технологий в
 транспортных компаниях