Приборы для определения напряженно деформированного состояния. Способ определения характеристик напряженно- деформированного состояния материалов деталей и конструкций. Средства измерений и вспомогательные
устройства

Приборы для определения напряженно деформированного состояния. Способ определения характеристик напряженно- деформированного состояния материалов деталей и конструкций. Средства измерений и вспомогательные устройства

Используются для измерения давления воды на границе бетонного сооружения и его основания, а также для измерения гидростатического и порового давления в конструкциях и основаниях гидротехнических сооружений. Данные датчики устанавливаются при строительстве сооружения.

Рис. 5. Датчик для напорных пьезометров и измерения гидростатического и порового давления

Приборы для контроля напряженно-деформированного состояния сооружений

Используются для измерения:

Силы растяжения или сжатия в арматуре (измерения начинаются сразу после установки и проводятся в течение строительства и по следующей эксплуатации до полной стабилизации напряженности и деформации или окончания срока эксплуатации приборов, который составляет 25 лет, устанавливаются на этапе строительства здания);

Линейных деформаций в несущих конструкциях сооружений (устанавливаются как на этапе строительства сооружения, так и во время эксплуатации, при закладном типе установки крепятся с помощью при¬варивания к металлическим частям конструкции, либо - анкерного крепления к железобетонным частям, при накладном - с помощью анкерных креплений к существующим конструкциям сооружений);

Напряженности почвы (контролируют контактное давление в грунте на границе бетонных сооружений и напряженность в грунтовых массивах, устанавливаются на этапе строительства сооружения).

Рис. 6. Приборы для контроля напряженно-деформированного состояния сооружений

Используются для измерения давления в:

Основаниях плотин, мостов и других массивных монолитных бетонных конструкций;

Каменных стенах тоннелей и шахт;

Бетонных опорах и столбах.

Рис.

Используются для измерения смещений земляных насыпных плотин, изменения базовых размеров и контроля проседаний в мягком грунте. Различаются по виду использования и типу конструкции:

Для насыпей (надзор контроля поперечного растяжения) и закрепленные (контроль за проседаниями или ростом насыпи);

Для скважин (несколько компонентные) - для контроля пространства, окружающего инженерное здание;

Для контроля проседаний - долгосрочный надзор над инженерным сооружением.

Экстензометр состоит из трех основных частей: анкера, стержня и сенсора (измерителя) смещений. Стержень соединяет индикатор с анкером, представляющим собой механически расширяющуюся конструкцию, изготовленную на базе клина, конуса или пружины и крепящуюся к стенке скважины.

Рис.

Прямые и обратные отвесы

Используются для измерения:

Смещения частей бетонных и металлических конструкций, которые находятся на достаточно большом расстоянии, относительно друг друга;

Смещение относительно вертикального направления бурения скважин и колодцев на этапе их создания;

Движения пластов горных пород;

Наклона высотных башен и опор, а также уровня их колебания.

Обратный отвес представляет собой проволоку один конец которой закреплен в забое скважины в основании плотины, а другой погружен в бак с жидкостью и поддерживает проволоку в вертикальном натянутом положении. Измерения по отвесам выполняются определением положения проволоки относительно сооружения по его высоте с помощью оптических (механических) средств измерения.

Расчеты и испытания на прочность

Экспериментальные методы определения
напряженно-деформированного состояния
элементов машин и конструкций.
Метод натурной тензометрии
энергетического оборудования

Настоящие рекомендации (Р) устанавливают основные положения методики проведения тензометрических исследований напряженно-деформированного состояния элементов энергетического оборудования в натурных условиях при пуско-наладочных работах и в процессе эксплуатации. При разработке Р учтены требования основополагающих нормативно-технических документов в области метрологического обеспечения (1 ? 14).

Распространяются на сосуды и трубопроводы, работающие под давлением, а также на теплоэнергетическое оборудование ТЭС, эксплуатируемое при температуре не выше 450 °С.


Коэффициент Пуассона;

Деформация, мкм/м;

К - чувствительность тензорезистора;

Выходной сигнал (относительное изменение сопротивления тензорезистора), мкОм/Ом;

Н - суммарная неинформативная составляющая выходного сигнала тензорезистора, мкОм/Ом;


Д - неинформативная составляющая выходного сигнала тензорезистора, связанная с дрейфом выходного сигнала, мкОм/Ом;

D? t - местные деформации, обусловленные влиянием тензорезистора и его защитного устройства на температурное поле детали;

T - температурное приращение сопротивления тензорезистора, обусловленное разностью температур детали и тензорезистора (предполагается, что температуры чувствительного элемента и подложки одинаковы);

a - коэффициент линейного расширения, 1/°С;

S - среднеквадратическая погрешность измерений или определения влияющей величины.

1. СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

1.1. При выполнении измерений применяются следующие средства измерений и устройства (15 ? 20):

Тензорезисторы;

Термопары;

Измерительные приборы;

Соединительные провода;

Защитные устройства.

Средства измерений должны быть поверены или метрологически аттестованы.

1.2. Тензорезисторы.

1.2.1. Тензорезисторы могут быть применены для измерений деформаций натурных объектов, работающих в стационарных и нестационарных условиях при пуско-наладочных работах и эксплуатации в широком диапазоне рабочих температур, давлений, величин деформаций.

1.2.2. Выбор типов тензорезисторов производится с учетом условий работы натурного объекта и целей эксперимента.

Основными критериями при этом являются: диапазон рабочих температур натурного объекта, предполагаемый уровень измеряемых деформаций и длительность испытаний.

1.2.3. При тензометрических исследованиях энергетического оборудования могут применяться приклеиваемые и привариваемые тензорезисторы. В случае применения привариваемых тензорезисторов следует иметь в виду, что сварка может влиять на прочность исследуемой детали.

1.2.4. Применение приклеиваемых тензорезисторов при повышенных температурах требует использования клеев горячего отверждения. Поэтому применять приклеиваемые тензорезисторы следует в тех случаях, когда возможна термообработка детали после установки тензорезисторов.

1.2.5. В тех случаях, когда невозможна термообработка детали после установки тензорезисторов, следует применять привариваемые тензорезисторы.

1.2.6. В диапазоне температур от климатических до 450 °С используются тензорезисторы типа НМТ-450.

1.2.7. При температурах до 200 °С можно применять тензорезисторы типа КФ4 и КФ5 с использованием клея горячего отверждения ВС-350. Если габариты детали не позволяют произвести термообработку, следует применить тензорезисторы КФ4 или КФ5, предварительно установленные на металлические подложки, привариваемые к детали контактной сваркой после соответствующей термообработки.

1.3. Термопары.

1.3.1. При тензометрических исследованиях в условиях повышенных температур необходимо измерять температуру детали в местах установки рабочих (и компенсационных) тензорезисторов для определения соответствующих поправок.

1.3.2. При тензометрических исследованиях энергетического оборудования следует применять термопары типа хромель-алюмель (или хромель-копель) с жаростойкой изоляцией.

1.3.3. При измерениях на внутренних поверхностях необходимо учитывать особенности измерений температур поверхностей, подверженных воздействию рабочей среды.

1.4. Измерительные приборы.

1.4.1. Основными критериями при выборе измерительных приборов для тензометрических исследований энергетического оборудования служат: диапазон и скорость изменения измеряемых величин, точность измерений и количество измерительных точек, способ регистрации и обработки результатов измерения, работоспособность в составе информационно-измерительных систем в комплексе с ЭВМ.

1.4.2. При выборе измерительных приборов следует учитывать климатические условия, в которых эксплуатируется исследуемый натурный объект, а также длину соединительных проводов.

1.4.3. Для измерения статических и квазистатических деформаций надо применять цифровые измерительные приборы ИДЦ-1, тензометрические системы СИИТ-3, СИИТ-2, К-732, К-742 и ТК-80, технические характеристики которых приводятся в таблице приложения, а также системы, имеющие аналогичные характеристики и прошедшие метрологическую аттестацию. В отдельных случаях, при небольших объемах измерительных точек могут быть применены аналоговые тензометрические мосты КСМТ-4 с записью на диаграммной ленте (пределы измерений ± 2500 и ± 5000 мкОм/Ом; цена деления 50 и 100 мкОм/Ом; число точек измерений - 1, 6, 12; цикл печатания - 1, 4, 12 с; скорость продвижения ленты: многоточечного - до 7200 мм/час; одноточечного - до 54000 мм/час; питание - 220 В, 50 Гц).

1.4.4. При подготовке к натурным измерениям и контроле тензоизмерительной схемы можно использовать прибор ИСД-3 с автономным питанием от сухих элементов (пределы измерений от 0 до 20000 мкОм/Ом, цена деления шкалы - 20 мкОм/Ом, число подключаемых тензорезисторов - до 20).

1.4.5. Для измерений деформаций при быстроидущих тепловых процессах на натурном объекте следует применять аналоговые измерительные приборы типа КСМТ-4 (см. п. 1.4.3), а также многоканальные магнитоэлектрические осциллографы типа НО.43 с усилителем типа 8АНЧ23 и 4АНЧ22 или другие системы с аналогичными характеристиками и прошедшие метрологическую аттестацию.

1.4.6. При комплексных исследованиях натурных объектов (деформации и температуры) с большим числом измерительных точек и при необходимости оперативной обработки информации в ходе эксперимента следует применять измерительные системы типа ТК-80, позволяющие вести синхронную регистрацию деформаций и температур.

1.4.7. Для измерений температур при стационарных процессах используются многоточечные автоматические потенциометры типа КСП или цифровые вольтметры Щ68003.

1.4.8. В случае применения цифровых вольтметров для измерения температур необходимо вводить поправку в результат измерений на температуру холодного спая термопары. Поправка определяется по данным прибора, контролирующего температуру холодного спая в процессе эксперимента.

1.4.9. Для измерения быстроменяющихся температур следует применять аналоговые измерительные приборы типа КСП или шлейфовые осциллографы типа НО.43.

1.5. Соединительные провода.

1.5.1. При тензометрических исследованиях энергетического оборудования необходимо применение жаростойких проводов на участке трассы с повышенными и высокими температурами.

1.5.2. Основными критериями при выборе жаростойких проводов являются диапазон рабочих температур, погонное сопротивление и температурный коэффициент сопротивления, а также свариваемость провода с выводными проводниками тензорезистора.

1.5.3. Для соединения тензорезисторов с измерительными приборами можно применять на участке трассы с повышенными температурами провода типа ПОЖ или другие провода с аналогичными характеристиками; на участке с климатическим диапазоном температур - кабель типа КММ, либо аналогичный.

1.5.4. В качестве термоэлектродных проводов следует использовать провода типа ПТНО. В качестве соединительных проводов можно применять компенсационные провода (в случае использования потенциометров типа КСП) или медные провода (в случае применения цифровых вольтметров). В последнем случае необходимо вводить поправку в результат измерения на температуру холодного спая термопары (см. п. 1.4.8).

1.5.5. Длина и тип соединительных проводов должны соответствовать технической документации на измерительную аппаратуру.

1.6. Защитные устройства.

1.6.1. При тензометрических исследованиях энергетического оборудования необходима защита тензорезисторов, термопар и соединительных проводов от воздействия окружающей среды.

1.6.2. Выбор защитных устройств производится с учетом условий работы натурного объекта и его конструктивных особенностей.

1.6.3. Рекомендуемые типы металлических защитных устройств тензорезисторов и термопар приведены на рис. 1.1. Защитные устройства крепятся к детали с помощью аргонодуговой или контактной сварки и должны быть герметичны.

1.6.4. При измерениях на наружных поверхностях следует применять защитные устройства по типу «в» и «г».

1.6.5. При длительных измерениях статических деформаций на внутренних поверхностях, подверженных воздействию рабочей среды, высоких температур и давлений, используют защитные устройства по типу «а» и «б».

1.6.6. При необходимости соблюдения аэродинамической чистоты поверхности следует применять защитные устройства типа «д».

1.6.7. При измерениях деформаций в условиях воздействия быстроменяющихся температур (тепловой удар) могут быть применены защитные устройства типа «е» (гермотензодатчики), у которых защитный элемент выполняется непосредственно на подложке тензорезистора типа НМТ.

Рис. 1.1. Типы защитных устройств тензорезисторов

1 - деталь; 2 - обечайка; 3 - крышка; 4 - провода термостойкие; 5 - аргонодуговая сварка; 6 - трубка защитная; 7 - скоба; 8 - термопары; 9 - тензорезисторы (рабочий и компенсационный; 10 - колпачок фрезерованный; 11 - колпачок штампованный; 12 - сухарь; 13 - пайка; 14 - точечная сварка «вперекрышку»; 15 - пластинка защитная; 16 - изоляция; 17 - пластинка; 18 - подложка тензорезистора; 19 - контактная сварка с непрерывным швом; 20 - точечная сварка

1.6.8. Для защиты соединительных проводов используются холоднотянутые трубки из нержавеющей стали, припаиваемые (с помощью припоев ПСр) или привариваемые (аргонодуговая сварка) к защитным устройствам тензорезисторов.

2. МЕТОД ИЗМЕРЕНИЙ

2.1. Измерение деформаций выполняется методом тензометрии с применением тензорезисторов, принцип действия которых основан на тензорезистивном эффекте, т.е. изменении электрического сопротивления проводника при его деформировании.

2.2. Измерение деформаций является косвенным измерением. При воздействии на тензорезистор температуры и других влияющих факторов измеренная деформация определяется по формуле:

где? и? н - выходной сигнал и суммарная неинформативная составляющая выходного сигнала; ф t - значение функции влияния температуры на чувствительность тензорезистора при данной температуре.

2.3. Выходной сигнал тензорезистора определяется выражением (для измерительного прибора с пропорциональной функцией преобразования):

M(1 + r t /R) · ? пр, (2.2)

где D пр - разность отсчетов измерительного полумоста прибора, вызванного изменением сопротивления тензорезистора; М - номинальная цена единицы наименьшего разряда прибора; r t - сопротивление соединительных проводов (с учетом приращения от температуры); R - начальное сопротивление тензорезистора.

2.4. Структура и величина неинформативной составляющей выходного сигнала тензорезистора определяются конкретными условиями измерений (воздействие влияющих факторов) и принятой схемой измерений (способ термокомпенсации) и т.п.

2.5. При измерениях статических деформаций (стационарный режим) ? н может быть представлена выражением

Н = ? t + ? п + ? д, (2.3)

где? t - температурная характеристика установленного на объект тензорезистора; ? п и? д - неинформативные составляющие выходного сигнала тензорезистора, связанные с ползучестью тензорезистора и дрейфом выходного сигнала.

2.6. Температурную характеристику установленного тензорезистора? t рассчитывают экспериментально, как разность индивидуальной характеристики «неприваренного» тензорезистора и средней разностной характеристики, которая определяется как разность средних значений температурных характеристик выборок (из партии) «неприваренных» и «приваренных» тензорезисторов. При натурном эксперименте можно найти по данным тензорезисторов-«свидетелей» той же партии, что и рабочие тензорезисторы, и установленных на исследуемом объекте рядом с рабочими тензорезисторами на образцах из материала той же марки (плавки), что и натурный объект. Выборка тензорезисторов - «свидетелей» должна быть достаточной для надежной оценки . Схема установки тензорезисторов-«свидетелей» приведена на рис. 2.1.

2.7. Неинформативную составляющую, ? п, связанную с ползучестью тензорезистора, получают экспериментально по данным натурной тензометрии с воспроизведением реальной нагруженности исследуемого объекта. При натурной тензометрии? п (в сумме с дрейфом начального сопротивления тензорезистора) проявляется как «уход нулей», который может быть оценен сравнительным анализом показаний рабочих тензорезисторов при двух идентичных тепловых и напряженно-деформированных состояниях натурного объекта.

2.8. Неинформативную составляющую? д, связанную с дрейфом выходного сигнала тензорезистора, следует определять с учетом реальной кинетики теплового состояния натурного объекта по данным тензорезисторов-«свидетелей», устанавливаемых на исследуемом объекте, или на стенде с воспроизведением температурных режимов натурного объекта.

Рис. 2.1. Схема установки тензорезисторов-«свидетелей»

2.9. При измерениях деформаций в условиях нестационарной работы натурного объекта суммарная неинформативная составляющая? н получает приращение?? t и может быть представлена выражением:

Н = (? t + ?? t) + ? п + ? д, (2.4)

где?? t - температурное приращение сопротивления тензорезистора, обусловленное разностью температур детали и тензорезистора (предполагается, что температуры чувствительного элемента и подложки тензорезистора равны).

2.10. Приращение?? t связано с непосредственным воздействием нестационарного теплового потока рабочей среды на тензорезистор и определяется экспериментально методом моделирования (стендовые испытания) или оценивается по данным натурной тензометрии с применением приближенной зависимости

где a t - коэффициент линейного расширения подложки тензорезистора в интервале температур (t 2 - t 1); t 1 и t 2 - температуры детали и тензорезистора (температуры чувствительного элемента и подложки тензорезистора предполагаются равными).

2.11. При применении способа компенсации температурного приращения сопротивления с установкой компенсационного тензорезистора на исследуемом объекте рядом с рабочим («схемная» компенсация) структура неинформативной составляющей может быть представлена формулой:

D? н = D? t + D?? t + D? п + D? д, (2.6)

где D? t - поправка на разность значений температурных характеристик установленных рабочего и компенсационного тензорезисторов;

D?? t - поправка, учитывающая разность температурных приращений сопротивлений рабочего и компенсационного тензорезисторов, обусловленных влиянием нестационарных тепловых полей (см. п. 2.10);

D? д - поправка, обусловленная дрейфом выходных сигналов рабочего и компенсационного тензорезисторов; D? п - составляющая, обусловленная ползучестью рабочего и компенсационного тензорезисторов.

Если компенсационный тензорезистор находится в свободном состоянии, в формулу (2.6) вместо D? п следует подставлять? п, т.е. неинформативную составляющую, связанную с ползучестью рабочего тензорезистора.

Выражение (2.1) в случае применения схемной компенсации принимает вид

2.12. Точность метода измерений обеспечивается за счет следующих факторов:

Применение схемной компенсации;

Подбор в пары тензорезисторов, соединяемых в полумост, по номинальным сопротивлениям, температурным характеристикам и дрейфу;

Применение тензорезисторов-«свидетелей»;

Синхронизация записей деформаций и температур (т.е. использование единой системы отсчета времени);

Дублирование измерительных точек;

Повторение идентичных режимов испытаний.

2.13. Точность метода определяется индивидуально для каждого натурного эксперимента с учетом реальных условий его проведения.

2.14. Расчетную оценку погрешности измерений при подготовке к измерениям следует проводить в соответствии с методикой /13/.

2.15. Окончательная оценка погрешности измерений должна производится по данным тензорезисторов-«свидетелей», учитывающих реальные нагруженность и кинетику теплового состояния натурного объекта.

Измеряемая деформация при этом определяется зависимостью

или (2.8)

где D - средняя величина показаний тензорезисторов-«свидетелей», установленных по схеме рис. 2.1.

D? п и? п - см. п.п. 2.7 и 2.11.

Среднеквадратическая погрешность измерений определяется выражением

где S к и - среднеквадратичные погрешности определения чувствительности и функции влияния температуры на чувствительность тензорезистора; S ? - приборная погрешность; S D и - среднеквадратичные погрешности определения неинформативной составляющей по показаниям тензорезисторов-«свидетелей» и ползучести.

Допускается в формулах (2.8) и (2.9) не учитывать величины? п и D? п, полагая составляющую погрешности, связанную с ползучестью, случайной. При этом необходимо обосновать принятое значение составляющей погрешности, связанной с ползучестью.

2.16. Исследуемая деформация?, как правило, отличается от измеренной деформации? u и на величину местных деформаций D?:

U + D?, (2.10)

где? u определяется в соответствии с п.п. 2.1, 2.7, 2.8.

2.17. Местные деформации D? обусловлены ужесточающим влиянием тензорезистора и его защитного устройства на деталь (D? ж), а также влиянием тензорезистора и его защитного устройства на температурное поле детали (D? t):

D? = D? ж + D? t . (2.11)

2.18. Величина D? ж зависит от соотношения жесткостей тензорезистора (с защитным устройством) и исследуемой детали и определяется в каждом конкретном случае путем моделирования (поляризационно-оптический метод, тензометрическая модель).

2.19. Местные деформации D? t зависят от конкретных условий измерений, конструкции защитного устройства и могут быть определены методом моделирования (стендовые испытания моделей) или расчетно-экспериментальным путем с использованием данных по температурным полям натурного объекта в зоне установки тензорезистора .

Приближенная оценка местных деформаций D? t может быть произведена по формуле:

D? t =С · aDt, (2.12)

где Dt - разность температур детали на базе тензорезистора (защитного устройства) и вне зоны его действия; a - коэффициент линейного расширения детали; С - эмпирический коэффициент.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ И БЕЗОПАСНОСТИ РАБОТ

3.1. К выполнению монтажа тензорезисторов и термопар могут быть допущены лица, имеющие профессии слесаря-механика 5-го разряда и сварщика 4-го разряда (аргоно-дуговая и контактная сварка) с практическим опытом работ, обученные и прошедшие специальную аттестацию.

3.2. К выполнению монтажа соединительных линий и подключению их к измерительной аппаратуре допускаются лица, имеющие профессию наладчика КИП 5-го разряда с практическим опытом работ.

3.3. К наладке системы тензометрии и обслуживанию информационно-измерительных систем могут допускаться лица, имеющие профессию инженера-электрика с соответствующей специализацией и с практическим опытом работы.

3.4. К обработке и анализу результатов измерений могут быть допущены лица, имеющие профессию инженера-механика с практическим опытом работы не менее пяти лет.

3.5. При выполнении монтажа тензорезисторов, термопар и соединительных линий на объекте должны быть соблюдены требования по технике безопасности для электромонтеров, обслуживающих оборудование, напряжением до 1000 В. ГОСТ 12.3.002-75.

3.6. Перед началом работ на натурном объекте работники, участвующие в монтаже и наладке тензометрической системы и в измерениях, должны пройти общий инструктаж по технике безопасности и первичный инструктаж на рабочем месте с записью в журнале.

3.7. Все лица, участвующие в монтаже тензорезисторов, термопар и соединительных линий, должны иметь удостоверение о проверке знаний ПТЭ и ПТБ с квалификацией не менее III группы.

3.8. При наладке тензометрической системы и проведении измерений должны быть соблюдены требования, обеспечивающие безопасность труда и производственную санитарию в соответствии с ГОСТ 1.26.77.

4. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.1. При выполнении измерений должны быть соблюдены следующие условия.

4.1.1. В местах установки тензорезисторов измеряемые деформации не должны превышать предельных значений, указанных в паспортах на тензорезистор и измерительную аппаратуру. В случай превышения предельных значений деформации результаты измерений по данным тензорезисторам исключаются из рассмотрения (или производится дополнительная проверка).

4.1.2. В измерительных точках температуры не должны превышать 450 °С при применении тензорезисторов типа НМТ и 200 °С при использовании тензорезисторов типа КФ. В первом случае допускается кратковременное повышение температуры до 465 °С, при этом необходим контроль возможных изменений температурных характеристик и величины дрейфа по показаниям тензорезисторов-«свидетелей».

4.1.3. Скорости изменения температуры поверхности металла в измерительных точках расположенных на внутренних поверхностях исследуемой конструкции, не должны превышать:

При применении защитных устройств типа «а» - «д» (см. п. 1.6) - 0,5 °С/с;

При применении защитных устройств типа «е» (см. п. 1.6) - 10 °С/с.

4.1.4. При применении защитных устройств типа «е» (см. п. 1.6) на внутренних поверхностях оборудования давление не должно превышать 30 МПа.

4.1.5. Длительность воздействия температур диапазона 350 ? 450 °С на тензорезисторы типа НМТ должна составлять не более 1500 часов.

4.1.6. При выполнении измерений следует учитывать, что выходной импеданс тензометрической линии может искажаться при попадании влаги во внутренний объем защитных устройств, что приводит к изменениям метрологических характеристик системы тензометрии. В случае применения герметичных тензометрических линий подобный эффект возникает при перераспределении влаги во внутреннем объеме линии (при переносе влаги из горячих зон, накапливании в более холодных зонах). В связи с этим в процессе измерения следует контролировать величину сопротивления изоляции тензометрических линий, которое должно составлять величину не менее 1 МОм.

4.2. В процессе измерений следует учитывать, что при действии перечисленных в п. 4.1 влияющих факторов могут изменяться метрологические характеристики системы тензометрии. При определении степени влияния указанных факторов, способов их контроля в процессе натурной тензометрии и методов внесения соответствующих поправок следует руководствоваться следующей таблицей 4.1.

Таблица 4.1

Факторы, влияющие на результат измерений

Величины, изменяющиеся при воздействии факторов, влияющих на результаты измерений

Способ контроля при натурной тензометрии

Способ внесения поправок в результаты измерений

Деформация и температура

По показаниям тензорезисторов

Дополнительный эксперимент с воспроизведением истории нагружения и температурных режимов

Температура

T , S ?t , ? д, S ? д

D? t , S D ?t , D? д, S D ?д

Скорость изменения температуры

По показаниям термоэлектрических преобразователей системы тензометрии

Расчетно-экспериментальный

Давление (для защитного устройства типа п. 1.6)

По штатным манометрическим датчикам энергооборудования

Дополнительный эксперимент по определению зависимости приращения выходного сигнала от внешнего давления

Длительность измерений

T , S ?t , ? д, S ? д

С помощью тензорезисторов-«свидетелей» или по результатам лабораторных исследований

Сопротивление изоляции тензометрических линий

Непосредственным измерением сопротивления изоляции при питании постоянным напряжением. Напряжение питания при измерениях не должно превышать 6 В.

При сопротивлении изоляции менее 1 МОм результаты тензоизмерений требуют дополнительной перепроверки

5. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

5.1. На первом этапе подготовки к проведению измерений выполняются следующие работы:

Построение математической модели измерений деформаций (раздел 2);

Определение значений влияющих величин (раздел 4);

Анализ конструктивных особенностей натурного объекта;

Выбор средств измерений;

Выбор способа компенсации температурного приращения сопротивлений;

Выбор способа обработки и формы представления результатов измерений;

5.1.1. Выбранные средства измерений должны удовлетворять условиям

S ? ? S доп, (5.1)

где S ? - сумма частных погрешностей измерений, вносимых каждым элементом тензосистемы; S доп - допустимая погрешность измерений.

5.1.2. Выбранные привариваемые тензорезисторы должны удовлетворять условию

Da(t m - t 0) + ? max ?0,002, (5.2)

где Da - разность коэффициентов линейного расширения подложки тензорезистора и детали (компенсационной пластинки); t 0 и t m - начальная и максимальная рабочая температуры натурного объекта; ? max - предполагаемый уровень измеряемых деформаций.

5.1.3. Для компенсации температурного приращения сопротивления тензорезистора следует применять схемную компенсацию (рис. 5.1, а) с установкой компенсационного тензорезистора на натурном объекте рядом с рабочим на компенсационной пластинке; выполненной из материала той же марки (плавки), что и тензометрируемая деталь (рис. 5.2, а). Толщина компенсационной пластинки должна выбираться из условия обеспечения достаточной жесткости в случае различия коэффициентов линейного расширения подложки тензорезистора и пластинки. Допускается установка компенсационного тензорезистора по схеме рис. 5.2, б. При этом необходимо оценивать погрешность, вносимую в результат измерений данным способом установки. Применение схемной компенсации предполагает подбор тензорезисторов в пары (рабочий-компенсационный) по следующим параметрам:

Номинальное сопротивление;

Температурные характеристики;

Рис. 5.1. Способы температурной компенсации

а) схемная компенсация; б) компенсация с введением температурной поправки

1 - деталь; 2 - термопара; 3 - тензометрический прибор; 4 - компенсационная петля; 5 - термостат; 6 - термометрический прибор

5.1.4. Если схемная компенсация невозможна, допускается применение способа введения поправки на температурное приращение сопротивления тензорезистора (рис. 5.1, б). Поправка определяется по формуле

(5.3)

где? t - индивидуальная температурная характеристика «неприваренного» («неприклеенного») тензорезистора; D? t - разностная температурная характеристика; - поправка, учитывающая изменение? t при подрезке выводных проводников тензорезистора при его установке на натурном объекте.

При измерениях в нестационарных условиях необходимо вводить поправку на нестационарность в соответствии с п.п. 2.10 и 2.19.

5.2. На втором этапе производится разработка проекта тензометрии, включающего в себя разработку схемы размещения тензорезисторов и термопар, прокладку измерительных линий и привязку средств измерений (клеммники, коммутаторы, измерительные приборы и т.п.) к натурному объекту.

Способы установки компенсационного тензорезистора

а) на компенсационной пластинке; б) в «салазках»;

1 - компенсационная пластинка; 2 - скоба; 3 - салазки

5.2.1. Схема размещения тензорезисторов и термопар разрабатывается на основе предварительных лабораторных исследований на тензометрических и поляризационно-оптических моделях, анализа имеющихся расчетных данных, а также исходя из опыта эксплуатации исследуемого и подобных типов натурных объектов. Схема размещения должна учитывать конструктивные особенности натурного объекта и средств измерений (например, защитных устройств).

5.2.2. Трассировка измерительных линий должна быть выполнена с учетом имеющихся на станциях источников электромагнитных полей (генераторы, электродвигатели, силовые кабели, мощные сварочные аппараты и т.п.).

5.2.3. При разработке схемы размещения средств измерений на натурном объекте следует предусмотреть заземление измерительных цепей, обеспечивающее максимальное подавление помех.

5.3. На третьем этапе производится непосредственная подготовка средств измерений к эксперименту и монтаж тензоизмерительной системы на натурном объекте. Для проведения натурной тензометрии целесообразно иметь заранее подготовленный передвижной измерительно-вычислительный комплекс (информационно-измерительную систему). В конце третьего этапа подготовки к проведению измерений необходимо провести апробацию линий тензометрической системы имитатором сигнала тензорезистора на вход усилителя.

5.3.1. Подготовка тензорезисторов включает в себя следующие операции:

Измерение сопротивления тензорезистора;

Измерение сопротивления изоляции;

Подбор в пары (схемная компенсация) по номинальным сопротивлениям, температурным характеристикам, дрейфу;

Обрезку полей подложки (при необходимости) до нужных размеров (но не менее трехкратного диаметра сварной точки) и подрезку выводных проводников;

Зачистку полей подложки и обезжиривание.

5.3.2. Подготовка соединительных линий (участка «горячей» зоны) включает в себя жгутование жаростойких проводов и прокладывание их в защитные трубки. Провода рабочего и компенсационного тензорезисторов каждого полумоста должны быть свиты между собой. Нельзя провода рабочего и компенсационного тензорезисторов одного полумоста размещать в разных защитных трубках.

Если в качестве электроизоляции применяется стеклочулок, его нужно предварительно прокалить для удаления парафина.

5.3.3. Защитные устройства тензоизмерительной системы изготавливаются с учетом конструктивных особенностей и условий эксплуатации натурного объекта. Если защитные устройства выполняются по типу рис. 1.1, е (гермотензодатчики), то их следует испытать на стенде с имитацией натурных условий измерений.

5.3.4. Если защитные устройства выполняются непосредственно на подложке тензорезистора по типу рис. 1.1, е (гермотензодатчик), необходимо повторное определение метрологических характеристик, так как в этом случае, в отличие от обычных (исходных) тензорезисторов, гермотензодатчик представляет собой систему, включающую в себя собственно гензорезистор, термопару, измерительные провода, защитные устройства и т.д.

5.3.5. Измерительные провода должны пройти профилактический осмотр; кабели следует проверить на целостность. Сопротивление измерительных линий и датчиков (тензорезисторов или термопар) должно соответствовать техническим требованиям измерительных приборов.

5.3.6. Перед установкой тензорезисторов поверхность натурного объекта в измерительных точках должна быть очищена от ржавчины, окалины и т.п. и обезжирена. Поверхность обрабатывают войлочными и вулканитовыми кругами с мелким абразивом. В качестве растворителей применяют ацетон, бензин и т.п. Качество очистки оценивается по внешнему виду (металлический зеркальный блеск).

5.3.7. Режим приварки тензорезисторов к детали выбирается по таблицам ориентировочных режимов, номограммам или производят опытные работы. Основными параметрами при этом являются, сила тока I a , длительность импульса?, диаметр сварной точки d, усилие сжатия Р с и шаг сварки h.

Следует учитывать, что режим сварки меняется при колебаниях напряжений сети, смятии и износе электродов и т.п. Поэтому параметры режима требуют стабилизации и регулирования процесса приварки тензорезисторов. Электрод необходимо периодически зачищать, сохраняя его первоначальную форму.

Качество соединений оценивается испытаниями на срез и отрыв с анализом макро- и микроструктуры соединения. Усилия сжатия при регулировании режима менять не рекомендуется; его определяют и выставляют на сварочном «пистолете» заранее при отработке режима.

Непосредственно перед установкой тензорезисторов следует произвести технологическую пробу: имитатор подложки тензорезистора приваривают к поверхности тензометрируемой детали и затем его отрывают. При хорошем качестве сварки в имитаторе образуются отверстия в точках сварки (рис. 5.3).

Рис. 5.3. Технологическая проба

Рис. 5.4. Система защиты тензосхемы

1 - тензорезистор; 2 - защитное устройство; 3 - соединительные провода; 4 - защитная трубка; 5 - скобка; 6 - фильеры; 7 - припой ПСр; 8 - шайба; 9 - заглушка; 10 - концевик; 11 - эпоксидная смола; 12 - защитная хлорвиниловая трубка; 13 - переходник; 14 - аргонодуговая сварка

5.3.8. Соединение выводных проводников с проводами следует производить с помощью аргонодуговой сварки. Если при этом необходимо подрезать выводы тензорезисторов, должно выполняться условие равенства длин выводных проводников рабочего и компенсационного тензорезисторов.

5.3.9. Тензорезисторы-«свидетели» (см. п. 2.6) устанавливаются на натурном объекте на образцах, выполненных из материала той же марки (плавки), что и тензометрируемая деталь.

5.3.10. Защитную систему тензоизмерительной схемы следует выполнять герметичной (рис. 5.4). Перед герметизацией систему необходимо продуть сухим инертным газом (аргон, гелий). Система должна быть оснащена устройством, позволяющим производить ее периодическую продувку в процессе эксперимента (в случае разгерметизации и попадания влаги в тензоизмерительную систему).

5.3.11. Для вывода измерительных линий с внутренних поверхностей корпусных деталей, работающих под давлением, следует применять узлы (гермовыводы) по схеме рис. 5.5.

Рис. 5.5. Варианты герметичных выводных узлов

1 - стенка корпуса; 2 - фильера; 3 - припой; 4 - нажимная шайба; 5 - заглушка; 6 - электродуговая сварка; 7 - трубка зажимная; 8 - изоляция; 9 - труба; 10 - диск; 11 - штуцер; 12 - гайка накидная; 13 - втулка; 14 - шайба; 15 - переходник; 16 - сальник; 17 - шайба коническая; 18 - аргонодуговая сварка

6. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

6.1. При выполнении измерений должны применяться следующие операции:

Оснащение приборов необходимым количеством диаграммной бумаги или перфоленты;

Маркирование на каждом приборе диаграммной бумаги или перфоленты. (Указывается: номер измерительного прибора, дата, время, название режима и т.п.);

Включение и прогрев приборов;

Установка скорости протяжки диаграммной бумаги, интервал опросов и количество циклов в одном опросе в зависимости от режима;

Пуск измерительных приборов, запись «нулевых» состояний;

Наблюдение за исправностью работы приборов;

Поддерживание постоянной связи (телефонной или громкоговорящей) с эксплуатационным персоналом энергетического объекта;

Занесение в журнал информации о ходе выполнения режима, об изменениях в измерительной схеме;

В случае необходимости, выполнение «экспресс»-обработки по реперным измерительным точкам и передача соответствующих данных о параметрах или температурах эксплуатационному персоналу энергетического объекта. Под реперными измерительными точками следует понимать такие измерительные точки, которые несут основную информацию о напряженном состоянии энергетического объекта;

Повторная запись «нулевых» состояний после проведения режима и выключение приборов.

6.2. Контроль за нормальной работой измерительной аппаратуры производится в соответствии с техническими требованиями конкретного прибора. Например, контроль исправности тензометрического прибора ТК-80 производится путем периодического опроса четырех контрольных каналов, к которым подсоединены термостатированные сопротивления по схеме полумоста и сбалансированы при двух положительных и двух отрицательных значениях выходного сигнала, близких к нулю и к максимальному значению (например, +50; +8500 и -50; -8500).

6.3. Состояние тензорезисторов и термопар при грузовом отсчете (при проведении режима) контролируется по заранее выбранным критериям:

Для тензорезисторов

где х - отсчет по прибору; ? доп - предполагаемый уровень измеряемых деформаций; К - чувствительность; М - номинальная цена единицы наименьшего разряда прибора;

Для термопар t ? t maх ,

где t maх - максимальная рабочая температура натурного объекта.

6.4. При контроле состояния измерительной схемы периодически производится измерение сопротивления изоляции линий.

7. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

7.1. В общем случае обработка результатов измерений состоит из трех этапов: первичной, промежуточной и окончательной обработки.

7.2. Целью первичной обработки результатов измерений является извлечение из выходного сигнала тензорезистора информативной составляющей, перевод показаний измерительных приборов в значение соответствующих измеряемых деформаций и определение напряжений в измерительных точках исследуемой конструкции.

7.3. Если измерения деформаций производятся с помощью аналоговых приборов (самописцев и осциллографов), то первичная обработка результатов включает в себя:

а) синхронизацию кривых на диаграммных лентах и осциллограммах;

б) «привязку» кривых к номерам измерительных точек, тензорезисторов и термопар;

в) выбор начальных состояний, относительно которых следует обрабатывать текущие значения показаний приборов;

г) кодировку первичной информации на перфоленту, магнитную ленту, магнитный диск;

д) машинную обработку подготовленной информации по соответствующим программам с выдачей первичных данных (максимальные величины напряжений, температуры в измерительных точках, основные параметры натурного объекта и т.п.).

7.4. Если измерения деформаций производятся цифровыми приборами с непосредственной передачей информации в ЭВМ или выводом ее на промежуточный накопитель (перфолента, магнитная лента и т.п.), то первичная обработка выполняется автоматически по соответствующим программам. Применение цифровых приборов типа ТК в комплексе с ЭВМ позволяет получать результаты в ходе эксперимента, оперативно оценивать текущее состояние натурного объекта и влиять на ход эксперимента.

7.5. Программы для машинной обработки результатов намерений должны учитывать особенности конкретного натурного эксперимента /14/. Вместе с тем их следует составлять в соответствии с общим алгоритмом обработки результатов натурных тензометрических исследований энергетического оборудования, содержащего следующие основные положения.

7.5.1. Анализ состояния измерительных и регистрирующих приборов по результатам нескольких наблюдений и исключение показаний приборов с грубыми погрешностями. Для повышения достоверности измерений при каждом текущем состоянии натурного объекта следует многократный опрос тензорезисторов и термопар не менее 3-х раз.

7.5.2. Анализ состояния тензорезисторов и термопар с привлечением соответствующих критериев и исключение результатов, содержащих грубые погрешности.

7.5.3. Определение температур в измерительных точках и вычисление разностей температур рабочих и компенсационных тензорезисторов (если применяется схемная компенсация температурного сопротивления). Если для измерения температур используют цифровые вольтметры (типа Щ 68003 и др.), то температуры следует представлять аналитическими зависимостями в функции отсчетов приборов в виде полиномов.

7.5.4. Обработка показаний тензорезисторов-«свидетелей» и определение неинформативной составляющей выходного сигнала тензорезистора и ее среднеквадратичной погрешности.

Следует иметь в виду, что тензорезисторы-«свидетели» не учитывают погрешностей, обусловленных нестационарностью тепловых процессов и ползучестью рабочих тензорезисторов.

7.5.5. Представление функции влияния температуры на чувствительность тензорезистора аналитической зависимостью в функции температуры в виде полинома n -ой степени.

7.5.6. Определение деформаций по показаниям тензорезисторов с использованием зависимостей (2.1) ? (2.3), (2.10).

7.5.7. Определение главных деформаций в измерительных точках с использованием формул для трехкомпонентных розеток. В случае применения прямоугольной розетки (0, 45, 90) главные деформации определяются по формуле

7.5.8. Представление модуля упругости Е аналитической зависимостью в функции температуры в виде полинома n -ой степени. (По данным расчета на прочность элементов сосудов и трубопроводов, а также РТМ других ведомств). Коэффициент Пуассона допускается задавать постоянным числом для всего диапазона рабочих температур.

7.5.9. Определение погрешности измерений деформаций по формуле 2.9.

7.5.10. Определение главных напряжений по формуле

(7.2)

7.5.11. Оценка погрешности определения напряжений по формуле

где - погрешности определения главных деформаций? 1 и? 2 , S E и S ? - погрешности определения модуля упругости и коэффициента Пуассона.

7.5.12. Вывод результатов вычислений на печать.

7.6. На промежуточном этапе обработки результатов измерений производится окончательная оценка погрешности натурного эксперимента с проведением дополнительных лабораторных и стендовых исследований для уточнения составляющих погрешности эксперимента, которые не могли быть определены при планировании эксперимента и в процессе натурных измерений.

7.6.1. Действительная ползучесть тензорезистора определяется на специальном оборудовании по данным натурных исследований с учетом реальной погруженности натурного объекта в соответствии с п. 2.7.

7.6.2. Погрешности, обусловленные нестационарностью теплообмена в натурном объекте D? t и?? t , выявляются в соответствии с п.п. 2.10 и 2.19.

Если погрешностью?? t допустимо пренебречь (наличие автономного защитного устройства розетки тензорезисторов), целесообразно применять расчетно-экспериментальный метод оценки погрешности, связанной с местными деформациями D? t . В случае применения защитного устройства тензорезистора цилиндрической формы, стенку корпуса (или другой детали) можно рассматривать как пластинку с осесимметричным распределением температур относительно оси защитного устройства или как полупространство, подверженное локальному осесимметричному тепловому воздействию. В этом случае задача сводится к решению уравнений Пуассона при найденных экспериментально температурах в узлах сетки, на которую разбивается исследуемая область, и заданных граничных условиях /14/.

Если в выходном сигнале тензорезистора присутствуют обе составляющие погрешности КD? t и?? t , связанные с нестационарностью, их следует определять моделированием, на стендах, имитирующих тепловые процессы, протекающие в тензометрируемых конструкциях. Это объясняется тем, что даже при достаточно точном измерении температуры решетки рабочего тензорезистора в натурных условиях расчетное определением?? t затруднительно из-за неопределенности текущих значений b и a.

7.7. Окончательная обработка результатов измерений предполагает анализ обработанных ранее данных, получение зависимостей и выявленных закономерностей. На этом этапе устанавливается связь между полученными величинами напряжений и конструктивными особенностями натурного объекта, напряженным состоянием конструкции и эксплуатационными режимами, максимальными величинами напряжений и характерными разностями температур объекта. Подготавливается материал для оценки прочности натурного объекта с учетом реальной нагруженности (по данным тензометрии) и остаточного ресурса (формируются циклы, определяются размахи деформаций и напряжений, оценивается нагруженность стационарного режима в цикле пуск-останов оборудования и т.д.).

7.8. В зависимости от поставленной задачи результаты измерений могут быть представлены в виде графиков или кривых, математических формул или номограмм, таблиц, статистических данных или словесных описаний.

7.9. Если измерения являются составной частью научно-исследовательских работ, результаты измерений должны оформляться в соответствии с общими требованиями и правилами оформления отчетов о научно-исследовательских работах (ГОСТ 7.32-81).

7.10. В соответствии с ГОСТ 8.011-72 при выражении точности измерений интервалом, в котором с определенной вероятностью находится суммарная погрешность измерений, устанавливается следующая форма представления результатов измерений

А; ? от? н до D в; Р,

где А - результат измерения в единицах измеряемой величины; D, D н и D в - соответственно погрешность измерения с нижней и верхней ее границами в тех же единицах; Р - установленная вероятность, с которой погрешность измерения находится в этих границах.

7.11. Результаты измерений на распечатках ЭВМ при первичной обработке должны содержать следующие данные:

Дату и время проведения режима;

Название и номер режима;

Номера неисправных тензорезисторов и термопар;

Номера измерительных точек;

Показания термопар, соответствующих рабочим и (при необходимости) компенсационным тензорезисторам;

Измеренные значения деформаций;

Значения главных напряжений в измерительных точках;

Показания установленных на конструкции «свободных» термопар (если они предусмотрены в измерительной схеме).

Режим № __________ Название режима ____________

Дата ______________ Время ______________________

Параметры установки (МПа)

Неисправные термопар:

Неисправные тензорезисторы:

7.12. Если дальнейшей обработки результатов измерений не требуется, выдача документа о результатах измерений может быть произведена в форме п. 7.11 с приведением дополнительных данных о примененных средствах измерений, измерительных системах и т.п.

Документ должен быть удостоверен лицом, проводившим измерения.

Приложение

Основные технические характеристики тензометрических приборов и систем, применяемых для измерения статических и квазистатических деформаций

Основные технические характеристики

Наименование приборов

Пределы измерений, мкОм/Ом

± 9999 - мост

± 19998 - полумост

от 2,5 · 10 5 до 10 6

Цена единицы наименьшего разряда, мкОм/Ом

2 - полумост

Сопротивление тензорезисторов, Ом

Быстродействие, измерений/с

Количество измерительных каналов

Максимальная длина линий связи от измерителя до коммутатора, м

Способ регистрации выходного

цифровое табло

печать ЭВМ

перфолента; ЭВМ

Литература

1. Методические указания РД 50.338-82. Расчеты и испытания на прочность Порядок разработки межотраслевых методических указаний на методы расчета и испытаний. - М.: Изд-во стандартов, 1982.

2. ГОСТ 8.467-82. Нормативно-технические документы на методики выполнения измерений. Требования к построению, содержанию и изложению. - М.: Изд-во стандартов, 1982.

3. Основополагающие стандарты в области метрологического обеспечения. - М.: Изд-во стандартов, 1986.

4. ГОСТ 20420-75. Тензорезисторы. Термины и определения.

5. ГОСТ 21616-76. Тензорезисторы. Общие технические условия.

6. ГоСТ 21615-76. Тензорезисторы. методы определения характеристик.

7. Нормирование и использование метрологических характеристик средств измерений. Нормативно-технические документы. (ГОСТ 8.009-84; РД 50-453-84; Методический материал по применению ГОСТ 8.009-84). - М.: Изд-во стандартов, 1985.

8. ГОСТ 8.042-72. Требования к построению, содержанию и изложению стандартов методов и средств поверки мер и измерительных приборов.

9. Методические указания. МИ 1317-86. Государственная система обеспечения единства измерений. Результаты и характеристики. Погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров. - М.: Изд-во стандартов, 1986.

10. Методические указания РД 50-474-84. Методика выполнения измерений с применением информационно-измерительных систем. Порядок разработки и формы регистрации. Общие требования. - М.: Изд-во стандартов, 1985.

11. ГОСТ 8.002-71. Организация и порядок проведения проверки, ревизии и Экспертизы средств измерений.

12. ГОСТ 11.002-73. Правила оценки анормальности результатов наблюдений.

13. Методические указания мИ 1347-86. Методика определения погрешности измерений деформаций проволочными и фольговыми тензорезисторами. - М.: ВНИИМСО, 1986.

15. Экспериментальные исследования и расчеты напряжений в конструкциях. - М.: Наука, 1975.

16. Методы исследования напряжений. - м.: Наука, 1976.

17. Экспериментальные методы исследования деформаций и напряжений в конструкциях. - М.: Наука, 1977.

18. Исследования напряжений в конструкциях. - М.: Наука, 1980.

19. Методы исследования напряжений в конструкциях энергетического оборудования. - М.: Наука, 1983.

20. Н.И. Пригоровский. Методы и средства определения полей деформаций и напряжений. - М.: Машиностроение, 1983.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАНЫ Институтом машиноведения им. А.А. Благонравова АН СССР

ИСПОЛНИТЕЛИ: д.т.н. Хуршудов Г.Х. (руководитель), к.т.н. В.С. Сенин, к.т.н. Ю.К. михалев, к.т.н. А.И. Сергеев, науч. сотр. С.В. Маслов

ОДОБРЕНЫ научно-методической комиссией по стандартизации секции «Расчеты и испытания на прочность» НТС Госстандарта СССР

ПО МАТЕРИАЛАМ КОНФЕРЕНЦИИ

Предлагаем вниманию читателей окончание подборки статей по материалам 9-го Международного Симпозиума по измерительным технологиям и интеллектуальным приборам, проходившего летом 2009 г. в Санкт-Петербурге (начало подборки см. журнал «Измерительная техника» № 3, 2010 г.)

Использование измерений скорости ультразвука для определения напряженно-деформированного состояния металлических изделий

Л. Б. ЗУЕВ, Б. С. СЕМУХИН, А. Г. ЛУНЕВ

Институт физики прочности и материаловедения СО РАН, Томск,

Россия, e-mail: [email protected]

Исследовано изменение скорости рэлеевских волн в деформируемых материалах. Описан прибор для точного измерения скорости распространения ультразвуковых колебаний. Показана возможность применения метода измерения их скорости для контроля качества циркониевых заготовок, используемых при холодной прокатке оболочек тепловыделяющих элементов ядерных реакторов.

Ключевые слова: ультразвуковые колебания, неразрушающий контроль, напряженно-деформированное состояние, контроль качества.

The investigations of ultrasound propagation velocity variation in deformable materials were carried out in order to determine the correlation between this velocity and the mechanical characteristics of deformable material. A detailed description of instrument for ultrasound propagation velocity accurate measurement is presented. Using Zr base alloys as an example, it is shown that the method can be used for quality control of zirconium billets, from which the nuclear reactor fuel cladding is fabricated by cold rolling.

Key words: ultrasound, nondestructive control, stress-strained state, quality control.

Ранее было установлено , что скорость распространения ультразвуковой волны в деформируемом растяжением образце зависит от общей деформации, напряжения течения и структуры исследуемого материала. Аналогичные результаты были получены для малых пластических деформаций . При исследованиях привлекла внимание форма зависимости скорости ультразвуковых колебаний (УЗК) от напряжения течения (рис. 1). Зависимость состоит из трех линейных участков, каждый из которых можно описать уравнением вида

^ = ^ + %о, (1)

где v0, % - эмпирические величины, имеющие различные значения для разных стадий пластического течения. Коэффициент % может принимать любой знак, но пропорциональность зависимости ^$(о) всегда сохраняется в пределах одного участка с коэффициентом корреляции около 0,9.

Ниже показана возможность использования уравнения (1) для определения механических свойств материалов нераз-

рушающим методом. Для этого были получены зависимости ^(о) для широкого круга металлов и сплавов (таблица).

Изменение скорости рэлеевских волн регистрировалось методом автоциркуляции импульсов непосредственно в процессе растяжения плоских образцов. Полученные зависимости ^(о) имеют одинаковый вид для всех исследованных материалов. Используя безразмерные величины скорости и напряжения и аппроксимируя выделяемые стадии линейными функциями, получаем обобщенную зависимость

/ = р,- + а, о / ов, (2)

где - скорость рэлеевских волн в ненагруженном образце, м/с; р,-, а, - эмпирические величины, не зависящие от материала; / = 1, 2 - номер линейного участка на рис. 1; ов - предел прочности исследуемого материала, МПа.

Рассчитанные значения р,-, а, для участков 1 и 2 составили Р1 = 1,0 ± 2 ■ 10-4, р2 = 1,03 ± 10-3, а1 = 6,5 ■ 10-3 ± 4,7 ■ 10-4, а2 = 3,65 ■ 10-2 ± 3,2 ■ 10-3.

Рис. 1. Зависимость скорости ультразвука от действующих напряжений в образце латуни

Из (2) следует

<зв = щ о//vS -Р/). (3)

Уравнение (3) можно использовать для оценки предела прочности при малых пластических деформациях задолго до разрушения образца. Таким образом, чтобы определить ов, достаточно измерить скорость УЗК при напряжениях в образце в пределах о02 < о < 0,6ов (где о02 - предел текучести), т. е. на участке малых пластических деформаций.

По уравнению (3) предел прочности при деформации порядка 1 % (о ~ 0,1 ов) был рассчитан для большинства материалов, приведенных в таблице. Полученные ультразвуковым способом значения сравнивали со значениями ов, найденными традиционно из диаграмм растяжения до разрыва (рис. 2). Значения и ов оказались равны с коэффициентом корреляции Я = 0,96.

Это означает, что предлагаемый метод можно использовать для оценки предела прочности материалов задолго до их разрушения. Природа полученного соотношения скорости и напряжений, возможно, заключается в том, что, с одной стороны, упрочнение материала связано с полями внутренних напряжений, которые тормозят движение дислокаций . С другой стороны, с увеличением внутренних напряжений скорость УЗК уменьшается . Таким образом, обе эти величины оказываются зависимыми от одного параметра, что в результате определяет связь между скоростью УЗК и механическими характеристиками материала.

Для использования ультразвукового метода в лабораторных и полевых условиях были разработаны два прибора: ANDA (акустический прибор для неразрушающего анализа состояния материалов в лабораторных условиях) и ASTR (прибор для определения остаточных напряжений металлоконструкций в полевых условиях). Принцип измерения скорости распространения рэлеевских волн, примененный в приборах, основан на методе автоциркуляции импульсов . Погрешность измерения составляет 3 ■ 10-5, работа с прибором не требует от оператора специальных знаний.

Суть метода автоциркуляции состоит в создании замкнутого контура для прохождения импульса. Под действием короткого электрического импульса излучающий пьезопреоб-разователь формирует акустическую волну в образце. Прошедшая от передающего к приемному пьезопреобразова-телю волна преобразуется обратно в электрический сигнал и вновь поступает в излучающий преобразователь. Таким образом, при неизменном расстоянии между преобразователями частота появления импульса в определенной точке цепи будет зависеть от времени прохождения акустического сигнала в образце и задержки в схеме прибора. Поскольку задержка в схеме пренебрежимо мала по сравнению с временем распространения акустической волны в образце, частота автоциркуляции будет характеризовать скорость распространения УЗК в образце. В данном случае поверхностные волны Рэлея имеют частоту 2,5 МГц.

Химический состав исследованных сплавов

Номер Материал Символ C N Si Mg Mn Li Cr Cu Ni Zn Pb Zr Ti Sn Nb

1 Сталь 0,12 - 0,8 - 2,0 - 17,0-19,0 0,3 9,0-11,0 - - - 0,5-0,8 - -

2 То же ■ < 0,12 0,008 0,5-0,8 - 1,3-1,7 - < 0,3 < 0,3 < 0,3 - - - - - -

3 » ▲ < 0,12 0,008 0,8-1,1 - 0,5-0,8 - 0,6-0,9 0,4-0,6 0,5-0,8 - - - - - -

4 » ♦ 0,14-0,22 - 0,12-0,3 - 0,4-0,65 - < 0,3 < 0,3 < 0,3 - - - - - -

5 Дюралюминий ® - - < 0,5 1,5 - - - 4,35 < 0,1 < 0,3

6 Al-Mg + - - 0,25 5,8-6,2 0,1-0,25 1,8-2,2 - - - - - 0,1 - - -

7 Al-Li X - - 0,15 - - 1,8-2,0 - 2,8-3,2 - - - 0,12 0,12 - -

8 Латунь - - < 0,1 - - - - - - 38,0-41,0 0,8-1,9 - - - -

9 Zr--Nb * - - - - - - - - - - - 99,0 - - 1,0

10 Zr-Nb - - - - - - - - - - - 97,5 - 1,0 1,0

600500-400^ 300^

200200 300 400 500 600

Рис. 2. Корреляция между пределами прочности, определенным ультразвуковым методом и пределом прочности, полученным по диаграмме растяжения образца (обозначения см. в таблице)

Ультразвуковой датчик, устанавливаемый на объект исследования, имеет два наклонных пьезопреобразователя, расположенных на фиксированном расстоянии друг от друга, называемом базой. Наклон пьезопреобразователей выбирают таким образом, чтобы формировать в объекте исследования поверхностную волну Рэлея. Для надежного измерения скорости необходимо обеспечить контакт с металлом контролируемого изделия зачисткой последнего от краски, грязи и окислов, поверхность должна быть ровной, датчик должен быть прижат к месту контроля. Акустический контакт с пьезопреобразователем обеспечивается жидкой неагрессивной смазкой, например, трансформаторным маслом. При этом следует помнить, что пространство между пьезопреобразователями должно оставаться сухим и чистым.

Одним из применений рассматриваемого ультразвукового метода является оценка напряженного состояния в циркониевых заготовках, используемых для производства оболочек тепловыделяющих элементов ядерных реакторов. В процессе холодной прокатки трубок из сплава Zr-Nb в заготовке формируется сложное распределение внутренних остаточных макронапряжений, которые могут привести к разрушению заготовки на одной из стадий обработки. Для оптимизации процесса прокатки требуется учитывать уровень и распределение остаточных напряжений в рабочих заготов-

а, МПа 1000"

Рис. 3. Распределение внутренних напряжений в Zr-заготовке круглого сечения

ках. Использование традиционных методов, таких как рентгеновский , для определения внутренних напряжений на заготовках большой протяженности связано со значительными временными затратами и фактически невозможно в условиях поточного производства.

Для рабочих заготовок было проведено исследование по определению внутренних напряжений с помощью ультразвукового прибора ASTR. В деформируемых в широких пределах напряжений образцах Zr-Nb-сплава 9 (см. таблицу) были выполнены измерения с целью установления зависимости скорости УЗК от напряжений. Наиболее важные результаты были получены для рабочих заготовок, в которых внутренние напряжения менялись в широком диапазоне. Предполагается расширить применение неразрушающих методов для определения остаточных напряжений в тонкостенных циркониевых трубках, производимых холодной прокаткой . Это позволит усовершенствовать существующую технологию их изготовления. Исследование выполняли как на трубках, так и заготовках из сплавов 9 и 10 на основе Zr.

Ресурс работы материалов и конструкций в большинстве случаев зависит от однородности структуры материала и напряженно-деформированного состояния конечного изделия выполненного из этого материала. На заготовках были измерены остаточные напряжения как рентгеновским методом, так и ультразвуковым, результаты полученных измерений были сопоставлены.

Обнаружено, что м

Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут . Стоимость одной статьи — 150 рублей .

Пoхожие научные работыпо теме «Метрология»

  • OPTICAL EMISSION CHARACTERIZATION OF LASER ABLATED ZIRCONIUM PLASMA

    HANIF M., SALIK M. - 2015 г.

  • NON-DESTRUCTIVE EVALUATION OF THE YIELD STRESS FOR LOW CARBON STEEL BY ULTRASOUND MEASUREMENTS

    KAVARDZHIKOV V., PASHKOULEVA D., POPOV AL. - 2013 г.

  • ОЦЕНКА КАЧЕСТВА ДЕРЕВОПЛИТЫ УЛЬТРАЗВУКОВЫМИ И СТАТИЧЕСКИМИ МЕТОДАМИ С ИСПОЛЬЗОВАНИЕМ УПРУГОЙ АНИЗОТРОПИИ

    АББАСИ МАРАШТ А., КАДЖЕМИ НАДЖАФИ С., ЭБРАХИМИ Г. - 2004 г.

  • THERMOGRAPHIC, ULTRASONIC AND OPTICAL METHODS: A NEW DIMENSION IN VENEERED WOOD DIAGNOSTICS

    AVDELIDISB N.P., KOUI M., SFARRAA S., THEODORAKEASB P. - 2013 г.


РАЗРАБОТАНЫ в лаборатории прочности газопроводных конструкций ВНИИГАЗа к.т.н. В.В.Харионовским, к.т.н. В.И.Дегтяревым, зав. группой С.А.Стрельцовым, инж. В.В.Сараевым, ст. инж. В.В.Калявиным. Оформление материалов выполнено лаборантом Борисовой О.И.

СОГЛАСОВАНЫ

Заместителем Начальника Управления по транспортировке и поставкам газа МИНГАЗПРОМА СССР А.Н.Козаченко

Заместителем директора д.т.н., профессором Э.М.Гутманом

Руководителем лаборатории прочности газопроводных конструкций, к.т.н. В.В.Харионовским

УТВЕРЖДЕНЫ Начальником Технического Управления Мингазпрома СССР А.Д.Седых 27 июня 1984 г.


Методические рекомендации по натурным измерениям напряженного состояния магистральных газопроводов разработаны в развитие рекомендаций, выполненных ВНИИГАЗом в 1983 г. и включают в себя описания методов измерения на газопроводах, измерительных схем и типов тензорезисторов, расчетов напряженного состояния. Составлены методики, отражающие особенности измерений и расчетов напряжений в трубопроводах КС и линейной части магистральных газопроводов, в том числе, в условиях Крайнего Севера, а также методики измерения вибрационных деформаций.

1. ВВЕДЕНИЕ

1. ВВЕДЕНИЕ

Развитие газовой промышленности на основе мощных магистральных газопроводов и эксплуатация их в районах со сложными природными условиями поставили на повестку дня вопросы контроля и оценки прочности и работоспособности газопроводных конструкций. При этом теоретические расчеты прочности магистральных газопроводов, закладываемые в проекты, являются ориентировочными, т.к. в принципе не могут учесть всех эксплуатационных факторов. С учетом того, что при строительстве неизбежны различные отклонения от проекта, реальный газопровод может иметь совсем другое напряженное состояние. Указанные соображения приводят к необходимости изучения действительного напряженного состояния газопроводов методами натурных измерений.

При натурных исследованиях напряженно-деформированного состояния положительно зарекомендовал себя метод тензометрирования, который применяется в авиации, машиностроении, строительстве, когда затруднительно вычислить напряжения и деформации в нагруженной конструкции или детали /1-3/.

Применительно к газопроводам метод тензометрирования имеет свои особенности, в первую очередь, это относится к условиям измерений. Если в вышеупомянутых отраслях тензометрирование применяется, как правило, в условиях стабильных температур, нормальной влажности, силового нагружения, то натурные условия газопровода включают в себя весь комплекс природных факторов-воздействий грунта, температур, осадков, а также переменного давления газа. Очевидно, напряженное состояние газопроводной конструкции будет сложным. Отсюда понятно, почему являются неудачными отдельные попытки измерить напряженное состояние трубопроводов магнитными, рентгеновскими, ультразвуковыми методами, которые оценивают, в основном, одноосное напряженное состояние деталей в лабораторных условиях и в принципе не могут отразить истинную картину напряжений.

Свободным от указанных недостатков является метод тензометрирования, который требует тщательной установки тензорезисторов на трубе. При выполнении этого требования тензометрирование является надежным долговременным инструментом получения информации о деформациях и напряжениях газопровода в эксплуатации.

Данные методические рекомендации служат для практического использования метода тензометрирования в натурных условиях эксплуатации трубопроводов компрессорных станций и линейных участков магистральных газопроводов и последующей оценки прочности обследуемых объектов. Они отражают особенности измерений на магистральных газопроводах и обобщают опыт натурных прочностных исследований, выполняемых в газовой промышленности начиная с 1977 года, в различных климатических и эксплуатационных условиях /4-6/.

Методические рекомендации предназначены для специализированных объединений отрасли, газотранспортных объединений, а также для научно-исследовательских организаций отрасли.

2. МЕТОДЫ ИЗМЕРЕНИЙ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЙ

Опытным путем можно измерить только линейные деформации, то есть измерять удлинения или укорочения выбранного отрезка прямой, расположенного на поверхности трубы. Такой отрезок прямой называется фиксированной длиной; величина этого отрезка определяется базой прибора. Измерение удлинений (или укорочений) фиксированной длины (или базы) при помощи приборов в пределах упругих деформаций называется тензометрированием.

Тензометрирование может быть осуществлено оптическими, механическими и электрическими приборами, которые, в конечном счете, регистрируют (непосредственно или косвенно) величину изменения фиксированной длины (базы) и называются тензометрами. Измерив тензометрами относительные удлинения и зная значения модуля упругости и коэффициента Пуассона , можно определить величины и направления напряжений в интересующих точках трубы надземного трубопровода; в этом и заключается сущность тензометрирования.

Большое распространение получили приборы, позволяющие электрическими методами измерять неэлектрические величины (относительное удлинение и т.д.), используя в качестве измерительных преобразователей тензорезисторы (тензометры сопротивления или тензосопротивления).

Сущность электрического метода заключается в использовании линейной зависимости величины изменения омического сопротивления тензорезистора от величины его удлинения; сам же тензорезистор наклеивается на исследуемую трубу или в определенное место в агрегате и деформируется вместе с ней.

Преимуществами этого метода измерения деформаций являются:

а) возможность измерения деформаций на расстоянии, а следовательно, и возможность организовать централизованную в одном пункте регистрацию показаний тензорезисторов, расположенных в различных точках исследуемого объекта;

б) определение деформаций трубы при ее транспортировке;

в) измерение деформаций в одной точке по нескольким направлениям;

г) достаточно большая точность измерений.

Обычно для измерения величины изменения омического сопротивления тензорезистора используют мостик Уитстона; существуют различные методы измерения , основанные на применении мостика.

3. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

3.1. Измеритель статических деформаций типа ИСД-3.

Одним из приборов, созданных на основе мостика Уитстона, является измеритель статических деформаций ИСД-3.

Технические данные прибора ИСД-3

1. Класс точности

2. Диапазон измеряемых деформаций в относительных единицах деформации

где - относительная деформация

3. Длина симметричного кабеля "датчик-прибор" с погонной емкостью до 150 пф/м не более

4. Цена деления шкалы реохорда при коэффициенте тензочувствительности тензорезисторов, равном 2,0 е.д.

5. Сопротивление применяемых тензорезисторов

6. Число точек измерения

7. Диапазон рабочих температур

8. Допустимая относительная влажность воздуха при температуре +20±2 °С

10. Масса прибора, кг

не более 3

Этот прибор предназначен для многоточечных и одиночных измерений статических деформаций в сооружениях и узлах машин в лабораториях, цеховых и полевых условиях. В приборе используется уравновешенная мостовая схема с измерением нулевым методом. На рис.1 представлена принципиальная схема прибора, поясняющая его работу.

Рис.1. Принципиальная схема прибора ИСД-3

Рис.1. Принципиальная схема прибора ИСД-3


Прибор состоит из компенсационного тензорезистора , рабочего тензорезистора , реохорда , двух сопротивлений и , соединенных по мостовой схеме. В диагональ ВД моста включен через усилитель нульорган, а в диагональ AC - питание. Подвижной контакт делит омическое сопротивление реохорда на части и .

Схема работает следующим образом. Если при ненагруженном состоянии исследуемого объекта подвижной контакт разделит сопротивление реохорда на равные части если , то стрелка нульоргана будет стоять на нуле (баланс мостика), то .

Если исследуемый объект деформируется, то омическое сопротивление тензорезистора изменяется, и стрелка нульоргана отклоняется от нулевого положения.

Вращая в ту или иную сторону ручку подвижного контакта , добиваемся возвращения на нуль стрелки нульоргана (что нарушит равенство между и ). Отсчитанная по лимбу - круговой шкале подвижного контакта - разность показаний, равная , дает возможность определить искомую величину относительной линейной деформации по формуле

Где - цена одного деления шкалы лимба.

Следуeт отметить, что для исключения влияния температуры на изменение омического сопротивления рабочего тензорезистора в схему вводится компенсационный тензорезистор с сопротивлением . Этот тензорезистор наклеивается на ненагруженную пластинку, изготовленную из того же материала, что и испытываемый объект и находящуюся в тех же температурных условиях. Этот способ измерения относительного удлинения не зависит от величины напряжения электрического тока в питательной цепи, кроме того, такая схема исключает влияние начального сопротивления тензорезисторов на результаты измерений.

Измеритель статических деформаций ИСД-3 является переносным прибором, смонтированным в металлическом корпусе, снабженном ручкой для переноски.

На лицевой панели прибора размещены:

а) два разъема типа РШТПБ-20 для подключения рабочих и компенсационных тензорезисторов при многоточечных измерениях;

б) клеммы , , , , 0 - для подключения рабочих и компенсационных тензорезисторов;

в) микроамперметр (нульоргана);

г) ручка переключателя тензорезисторов;

д) ручка и шкала реохорда;

е) тумблер "контроль" - "работа";

ж) тумблер "ВКЛ"-"ВЫКЛ" для включения и выключения прибора.

Батарея питания (типа 3336) помещается в нижней части корпуса в специальном отсеке и закрывается крышкой.

Измерение деформаций производится следующим образом:

а) тензорезисторы подключаются к клеммам прибора (рис.2);

б) нижний тумблер устанавливается в положение "ВКЛ", а верхний - в положение "работа";

в) вpaщeнием ручки реохорда проводится балансировка моста;

г) производится отсчет по шкале реохорда (большая стрелка указывает единицы, а малая - сотни делений);

д) нагружается исследуемая конструкция и после балансировки прибора вновь производится отсчет.

Рис.2. Схема соединения тензорезисторов

Рис.2. Схема соединения тензорезисторов


Относительная деформация, как было сказано выше, пропорциональна изменению сопротивления тензорезисторов при погружении* конструкции, т.е.
________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.

где - коэффициент тензочувствительности тензорезисторов;

Абсолютное приращение длины исследуемого участка конструкции;

- начальная длина участка.

Коэффициент тензочувствительности предполагается постоянным.

Величина деформации (при коэффициенте тензочувствительности тензорезисторов К-2) определяется как разность отсчетов до и после нагружения, умноженная на цену деления реохорда, т.е. справедлива формула:

Здесь о.е.д.

Для пояснения работы с прибором приведем пример.

Показания реохорда до нагружения (при балансе моста) 500 делений, после нагружения - 560 делений.

Разность отсчетов (абсолютная величина)

Делений.

Следовательно, относительная деформация

При коэффициенте тензочувствительности тензорезисторов, отличном oт 2 (2).

Где * - разность отсчетов при =2.
_______________
* Формула и экспликация к ней соответствуют оригиналу. - Примечание изготовителя базы данных.

Измерив деформации в исследуемых точках трубы, можно рассчитать величины напряжений.

3.2. Измеритель деформации цифровой ИДЦ-1

Назначение.

Измеритель деформации цифровой ИДЦ-1 (в дальнейшем - прибор) предназначен для измерения статических деформаций при помощи тензорезисторов, включаемых по полумостовой схеме. Прибор может быть применен в любой отрасли науки и техники, где необходимо проведение испытаний на механическую прочность различных материалов, машин, конструкций и т.п.

Условия эксплуатации прибора:

а) температура окружающего воздуха от минус 10 °С до плюс 40 °С;

б) относительная влажность воздуха от 30 до 80%.

в) питание прибора от источника постоянного тока напряжением

Технические данные

Диапазон измеряемых деформаций при коэффициенте тензочувствительности =2, еод от 0 до 19990 (1 еод = 10 относительной деформации )

Цена одной единицы дискретности показаний прибора, еод

Основная погрешность измерений, не более, еод

Время одного измерения, не более, с

Сопротивление применяемых тензорезисторов, Ом

Длина кабеля от прибора до исследуемого объекта

не более, м

Габаритные размеры, мм, длина

Число каналов измерения

Масса прибора, не более, кг

Ток потребления, не более, мА

По защищенности от воздействия окружающей среды исполнение прибора обыкновенное по ГОСТ 12997-76 *.
______________
* На территории Российской Федерации действует ГОСТ 12997-84 . - Примечание изготовителя базы данных.

Состав прибора.

Измеритель деформации цифровой ИДЦ-1 состоит (рис.3) из блока выпуска E1, блока усилителя А, блоков распределения импульсов Е2...Е5, блока коммутации К, блока индикации Д.

Рис.3. Структурная схема измерителя цифрового ИДЦ-1

Рис.3. Структурная схема измерителя цифрового ИДЦ-1

В блок запуска входят: устройство запуска и временной задержки, электронное реле времени, первая ступень распределителя импульсов, коммутатор электропитания.

Блоки распределителя импульсов Е2...Е5 идентичны и являются составной частью устройства автоматического уравновешивания. Каждый из блоков состоит из распределителя импульсов, усилителей мощности, ячеек И.

В блок усилителя входит трансформатор T1, усилитель напряжения, фазочувствительный детектор, исполнительный усилитель нульоргана, генератор питания измерительного моста.

Блок индикации состоит из преобразователя для питания индикаторных ламп, компенсирующих резисторов типа СЭС Ш и типа СЭС-10П, реле, обеспечивающих преобразование двоично-десятичной информации в блоке автоматического уравновешивания в десятичную информацию.

В блок коммутации входят переключатель тензорезисторов и внутренний полумост.

Общие указания.

Работу прибора начинайте только после тщательного изучения всех пунктов инструкции.

При изучении прибора произведите внешний осмотр и убедитесь в отсутствии механических повреждений. Проверьте комплектность прибора согласно формуляру.

Прибор может эксплуатироваться в лабораторных и стендовых условиях, а также на открытом воздухе при окружающей температуре от минус 10 до плюс 40 °С и влажности воздуха от 30 до 80%.

Погрешность прибора при его эксплуатации в зонах магнитного и электрического полей и в зоне радиоактивности заводом не гарантируется.

В случае пребывания прибора при температуре ниже минус 10 °С его эксплуатация при плюсовых температурах допустима только после 2-3 ч пребывания при температуре эксплуатации.

Порядок работы

Измерение производите путем кратковременного нажатия кнопки "ПУСК". Отсчет показаний визуальный по цифровому табло. Начальное показание принимается за условный нуль измерения.

Величина деформации при коэффициенте тензочувствительности тензорезистора =2 определяется по формуле:

Где - начальное измерение;

Измерение при нагруженном объекте.

При коэффициенте тензочувствительности тензорезисторов , то

Где - истинная относительная деформация;

- относительная деформация, измеренная прибором;

- коэффициент тензочувствительности.

Для уменьшения влияния активного сопротивления линии (проводов, соединяющих прибор с внешними тензорезисторами), рекомендуется применять линии по возможности малой длины и сечением каждого провода не менее 0,75 мм.

При работе с линиями длиной более 10 м необходимо в показания прибора вводить поправочный коэффициент, зависящий от величины активного сопротивления соединительной линии или производить тарировку применяемых тензорезисторов совместно с соединительной линией.

Измерение параметров, регулирование и настройка.

Прибор не требует перед измерениями предварительной настройки и регулирования. Необходимо периодически производить проверку основной погрешности.

3.3. Измеритель статических деформаций ИД-62М

Прибор ИД-62М на транзисторах с питанием от батареи карманного фонаря предназначается для измерения статических деформаций и медленно изменяющегося процесса с частотой измерения не более 1/2 периода в секунду.

Прибор оформлен в переносном исполнении в виде одной упаковки. Применяемые проволочные датчики могут иметь сопротивление 50-500 Ом и коэффициент чувствительности 1,8-2,2. Большое удобство при эксплуатации представляет использование датчиков сопротивлением в 120 Ом и коэффициентом чувствительности 2,0, т.к. при выпуске приборы имеют типовую тарировку применительно к датчикам этих номиналов. При использовании датчиков других номиналов следует производить дополнительную тарировку.

Прибор работает с двумя датчиками или группами по 9 активных и компенсационных или вторых рабочих с поочередным включением их через штепсельный разъем и переключатель.

Протарированные исправные приборы в течение весьма длительного времени сохраняют свои тарировочные данные.

В приборе имеется устройство, позволяющее производить проверку работоспособности прибора, тарировки и корректировку нулевых показаний, что делает его особенно ценным при проведении долговременных испытаний.

Краткие технические характеристики прибора ИД-62М

а) Диапазон измерений. Предел измерений охватывает упругую и пластическую зоны деформаций металлических конструкций и складывается из 10 диапазонов по 1000 мк/м и реохорда 2000 мк/м, что в сумме составляет около 12000 мк/м или 1,2%.

б) Градуировка. Шкала реохорда проградуирована в микронах/метр от 0 до 2000. Риски нанесены через 10 единиц.

в) Разрешающая способность. Разрешающей способностью прибора следует считать 0,5 делений, что соответствует 5 мк/м. Для стали с модулем упругости кг/см деформаций соответствует напряжению 10,5 кг/см.

г) Корректировка нулевых отчетов и чувствительности. Для повышения точности измерения в приборе предусмотрена возможность корректировки дрейфа и проверки постоянства градуировки реохорда.

д) Предел регулировки коэффициента чувствительности. Предел регулировки обеспечивает использование тензометров с коэффициентом чувствительности от 1,8 до 2,2.

е) Питание прибора. Прибор питается от двух батарей карманного фонаря 3,7 В, потребляемый ток около 5 мА.

ж) Габариты 260х200х145.

з) Вес прибора 4,6 кг.

Проведение измерений с прибором ИД-62М.

Проведение экспериментальных работ с прибором включает в себя:

а) подготовку датчиков и установку их в местах измерений;

б) тарировку прибора ИД;

в) снятие показаний и обработку результатов.

Подготовка и установка датчиков для измерений были рассмотрены в разделе "Тензометры".

Снятие показаний и проведение тарировки включает в себя большинство одинаковых операций, в связи с чем ниже дается порядок выполнения последовательных операций по снятию показаний, а далее приводятся правила выполнения тарировки.

Порядок выполнения операции:

а) подать питание и прогреть прибор в течение 15 мин;

б) проверить работоспособность прибора, для чего переключатель П установить в положение эталон нуля "ЭТ 0" и сбалансировать прибор переключателями П, П и реохордом - "Настройка", записать показания;

в) переключатель П поставить в положение "Тарировка" ("ТАР") при этом дается разбаланс моста в 0,1 Ом.

На шкале реохорда должна быть разница, равная 417 делений применительно к типовой тарировке (=120 Ом, =2).

4. ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ

При измерении деформаций и напряжений трубы действующего газопровода, а также деформаций и напряжений трубы при ее перевозке, наиболее целесообразно применять в качестве измерительных преобразователей тензорезиоторы (называемые также тензометрами сопротивления или тензосопротивлениями).

Использование тензорезисторов для этих целей обуславливается их малыми размерами, небольшой массой, возможностью дистанционного измерения статических и динамических деформаций и т.д.

Физическое явление, на котором основано действие тензорезисторов, состоит в свойстве материалов изменять свое электрическое сопротивление под воздействием приложенной к ним растягивающей или сжимающей силы.

В настоящее время в практике измерений используют проволочные, фольговые и полупроводниковые тензорезисторы.

4.1. Проволочные тензорезисторы

В наиболее простом случае проволочные тензорезисторы представляют собой отрезок проволоки, концы которой (или весь отрезок) жестко закрепляются с помощью клея или цемента на упругодеформируемой детали.

Сжатие или растяжение детали вызывает пропорциональное сжатие или растяжение проволоки, в результате чего изменяются ее длина, поперечное сечение и удельное электрическое сопротивление, что приводит, в конечном счете, к изменению электрического сопротивления проволоки. Так, если в исходном состоянии электрическое сопротивление проволоки:

Где - удельное электрическое сопротивление материала;

- начальная длина деформируемого участка;

- площадь сечения проволоки,

то при растяжении проволоки ее сопротивление изменится на величину и составит .

Относительное изменение сопротивления тензорезистора определяется соотношением

Где - изменение длины;

- изменение удельного электрического сопротивления;

Если процедура оплаты на сайте платежной системы не была завершена, денежные
средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Изобретение относится к области неразрушающего контроля физических характеристик материалов. Способ заключается в измерении параметров магнитных полей на поверхности исследуемого объекта и определении зоны скопления дислокаций, соответствующих аномальным зонам внутренних напряжений. Измеряют абсолютную величину максимума нормальной составляющей напряженности магнитного поля, дополнительно измеряют магнитную проницаемость материала в зоне максимума напряженности и вычисляют величину внутренних напряжений, по которой судят о напряженно-деформированном состоянии исследуемого материала. Дополнительно можно определить направление максимума тангенциальной составляющей напряженности магнитного поля, измерить ее абсолютную величину и вычислить вектор максимума внутренних напряжений. Дополнительно можно одним из известных способов измерить расстояние от поверхности исследуемого объекта до зоны аномальных внутренних напряжений, вычислить величину энергии, накопленной в этой зоне, по которой можно судить о степени активности зарождения и роста трещин. Изобретение дает возможность получать количественные характеристики внутренних напряжений. 4 з.п. ф-лы.

Изобретение относится к области неразрушающего контроля физических характеристик конструкционных, преимущественно ферромагнитных, материалов магнитными методами и может быть использовано для измерения характеристик напряженно-деформированного состояния материалов и сварных соединений в деталях различных конструкций ответственного назначения, например, в сварных и клепаных фермах, в стенках трубопроводов, сосудах высокого давления и других объектах энергетической, химической, машиностроительной отраслей промышленности и различных видов транспорта, испытывающих значительные нагрузки в процессе эксплуатации. Современная диагностика имеет большой арсенал разновидностей средств и методов измерения механических характеристик материалов, причем основное место в этом арсенале занимают методы и средства измерения остаточных и рабочих внутренних напряжений. Все известные магнитные методы диагностики конструкционных материалов можно разделить на две группы: активные - с созданием в материале исследуемой детали "принудительного" магнитного поля заданной ориентации и пассивные - использующие остаточную намагниченность изделия, вызванную внешними магнитными полями естественного или искусственного происхождения . Недостатки известных активных магнитных методов диагностики состояния конструкционных материалов заложены в самой физической сути этих методов и выражаются в полной нечувствительности к аномалиям материала, расположенным в глубине детали, а также к аномалиям (даже трещинам), расположенным на поверхности детали, но ориентированным вдоль силовых линий магнитного поля. Известные пассивные магнитные методы определения напряженно-деформированного состояния ферромагнитных конструкционных материалов представляют более тонкий инструмент, поскольку позволяют качественно отслеживать изменение остаточных напряжений под действием внешних сил. Недостатками пассивных магнитных методов являются низкая чувствительность к аномалиям, расположенным в глубине материала, и неоднозначность результатов определения напряженно-деформированного состояния. Эти методы основаны на зависимости магнитных характеристик материала от его структуры или фазового состояния, которые определяются технологической или эксплуатационной предысторией материала и начинают заметно изменяться только при больших значениях пластических деформаций, соответствующих околопредельным уровням механических напряжений. Более того, известные в настоящее время средства диагностики измеряют лишь некие параметры используемых физических полей, связанные в общем случае не с механическими напряжениями в чистом виде, а с совокупностью характеристик напряженно-деформированного состояния материала, причем связанные недостаточно изученными и не всегда монотонными и однозначными зависимостями. А это значит, что измеренные параметры не могут достоверно характеризовать состояние материала. Наиболее близким является способ определения зон остаточных напряжений в изделиях из ферромагнитного материала, заключающийся в том, что измеряют нормальную и тангенциальную составляющие напряженности магнитного поля рассеяния в каждой из заданного множества точек на поверхности исследуемого объекта, сравнивают измеренные значения составляющих напряженности магнитного поля и по точкам, в которых нормальная и тангенциальная составляющие напряженности равны, определяют границы зоны остаточных напряжений . Недостатком этого способа определения зон остаточных напряжений является большая погрешность, обусловленная значительной размытостью границ равенства нормальной и тангенциальной составляющих напряженности магнитного поля вследствие сильной зависимости величины тангенциальной составляющей от расстояния до поверхности исследуемого объекта и направления ее измерения. Однако главным недостатком этого и всех других известных способов определения характеристик напряженно-деформированного состояния материала деталей конструкций является невозможность получения абсолютных значений исследуемых характеристик, показывающих количественную степень близости фактически существующего в материале конструкции напряженно-деформированного состояния к критическому. Кроме того, необходимо заметить, что в большинстве случаев термин "остаточные напряжения" применяется некорректно, поскольку в любой эксплуатируемой конструкции остаточные напряжения действуют в совокупности с рабочими нагрузочными напряжениями и напряжениями, возникающими в процессе старения и деградации материала, поэтому следует говорить о "внутренних напряжениях". Задачами, на решение которых направлено предлагаемое изобретение, являются получение количественных характеристик напряженно-деформированного состояния конструкционных материалов (преимущественно ферромагнитных металлов) при одновременном повышении чувствительности, точности и достоверности результатов за счет использования собственных магнитных полей, создаваемых микродефектами структуры - дислокациями и их скоплениями. Разработанный способ обеспечивает:

Получение количественных характеристик внутренних напряжений;

Получение количественной информации о степени опасности или активности зарождающихся и развивающихся трещин;

Реконструкцию скалярных и векторных полей распределения внутренних напряжений;

Возможность прогнозирования динамики изменения напряженно-деформированного состояния конструкционных материалов в реальных условиях эксплуатации. Решение поставленных задач достигается тем, что в способе определения характеристик напряженно-деформированного состояния материалов деталей и конструкций, заключающемся в измерении параметров магнитных полей на поверхности исследуемого объекта, по изменению которых определяют зоны скопления дислокаций, соответствующие аномальным зонам внутренних напряжений, измеряют абсолютную величину максимума нормальной составляющей напряженности магнитного поля, дополнительно измеряют магнитную проницаемость материала в зоне максимума напряженности, вычисляют величину внутренних напряжений, по которой судят о напряженно-деформированном состоянии исследуемого материала. Кроме того, дополнительно определяют направление максимума тангенциальной составляющей напряженности магнитного поля, измеряют ее абсолютную величину и вычисляют вектор максимума внутренних напряжений. Кроме того, дополнительно одним из известных способов измеряют расстояние от поверхности исследуемого объекта до зоны аномальных внутренних напряжений, вычисляют величину накопленной в этой зоне энергии, по которой судят о степени активности зарождения и роста трещины. Кроме того, измерения проводят по всей поверхности исследуемого объекта, выполняют необходимые вычисления и строят скалярные или векторные поля распределения внутренних напряжений. И, наконец, измерения проводят повторно, через определенный период эксплуатации исследуемого объекта, сравнивают поля распределения внутренних напряжений и по разности значений напряжений оценивают скорость деградации материала, а по характеру изменения полей определяют зону и направление возможного разрушения. Сущность предлагаемого способа заключается в использовании малоизвестных и неизученных в аспекте практического применения свойствах дефектов кристаллической структуры металлов - дислокаций. Дислокация как реально существующий объект обладает вполне реальными физическими свойствами, обусловленными несбалансированностью электромагнитных полей, вызванной локальным разрушением элементов кристаллической атомной решетки . В случае ферромагнитного материала, элемент решетки представляет собой куб с атомами в его углах, а вся решетка - строгую пространственную структуру. Разрушение такого порядка проявляется как появление полуплоскости, являющейся своеобразным клином, на границах которого оказываются "оторванные" электрические заряды и спиновые моменты. Наличие избыточного количества свободных электронов по обе стороны границ позволяет компенсировать несбалансированность электрических зарядов, однако, "новые" электроны не в состоянии компенсировать разность спиновых моментов, что приводит к появлению элементарного магнитного момента - источника собственного магнитного поля дислокации. Поскольку в материале, даже в ненапряженном состоянии, существует значительное количество дислокаций, то материал представляет собой совокупность произвольно ориентированных "магнитиков", создающих собственное интегральное магнитное поле материала. В идеальном - однородном изотропном материале напряженность магнитного поля, создаваемого магнитными моментами дислокаций, будет равно нулю. Но любая неоднородность материала, свойственная всем реальным материалам, вызывает перемещения и группирование дислокаций , что приводит к появлению скоплений дислокаций, которые имеют существенно большие магнитные моменты. Это и является причиной неравномерности напряженности магнитного поля. Поскольку магнитное сопротивление ферромагнитных материалов мало, то магнитные потоки, создаваемые скоплениями дислокаций, векторно суммируясь, будут распространяться во всем объеме исследуемого материала с минимальными потерями, что дает возможность регистрировать скопления дислокаций, находящихся не только на поверхности исследуемой детали, но и в толще материала, и даже на противоположной стороне детали. Этим объясняется высокая чувствительность нового способа. Таким образом, принципиальное отличие предлагаемого способа от известных магнитных способов заключается в том, что измеряются параметры собственных магнитных полей дислокаций и их скоплений, тогда как все известные магнитные методы измеряют поля рассеяния, т.е. отклонения искусственно созданных магнитных полей, вызванные неоднородностями исследуемого материала. При этом искусственно создаваемые поля, обладая гораздо большей энергией, чем собственные поля скоплений дислокаций, практически полностью подавляют последние. Следует отметить, что предлагаемый способ принципиально может быть применен и для диагностики диамагнитных материалов. Однако здесь имеются серьезные осложнения технического характера, связанные с большим магнитным сопротивлением этих материалов и приводящие к необходимости обеспечения высокой чувствительности приемного тракта и глубокой компенсации внешних магнитных полей. В случае парамагнитных материалов применение предлагаемого способа невозможно вследствие того, что элементом их кристаллической структуры является гране- или объемноцентрированный куб, разрушение которого не приводит к разбалансу магнитных моментов . Реализуют способ следующим образом. Перемещая датчик напряженности магнитного поля по поверхности исследуемого объекта, по показания прибора находят глобальный или локальный максимум и измеряют значение нормальной составляющей напряженности - H z , затем одним из известных способов измеряют абсолютную магнитную проницаемость a материала в зоне максимума. Если применяемый прибор измеряет относительную магнитную проницаемость , то абсолютную вычисляют по формуле:

Где 0 - абсолютная магнитная проницаемость вакуума. Поскольку дислокация или их скопление является магнитным диполем, то сила, действующая на концы диполя - границы дефекта элемента кристаллической структуры - края будущей трещины, определяется следующей формулой:

F z = B z H z S д, (2)

Где B z - проекция магнитной индукции на нормаль к поверхности изделия в зоне максимума напряженности, причем:

B z = a H z ; (3)

Здесь S д - площадь поверхности, пронизываемая магнитным потоком. Но поскольку эта поверхность является поверхностью, на которую действует сила магнитного поля, то можно определить величину проекции напряжения, действующего в зоне дислокации или их скопления:

Z = F z:S д = a (H z) 2 . (4)

Таким образом получается количественная оценка величины внутренних напряжений, действующих в зоне зарождающегося или растущего дефекта. В таком варианте способ целесообразно применять при определении напряженно-деформированного состояния материала тонких изделий, испытывающих одноосные нагружения. Проводя аналогичные операции в точках, определяемых заданной или выбранной координатной сеткой, можно построить скалярное поле распределения внутренних напряжений. Для получения более полной характеристики напряженно-деформированного состояния материала объемных изделий или в случае сложного нагружения необходимо дополнительно измерять тангенциальную составляющую напряженности магнитного поля в тех же точках, где измерялась нормальная составляющая. Для этого необходимо, поворачивая датчик напряженности, найти максимальное значение тангенциальной составляющей - H , измерить ее величину и угол - между направлением максимума тангенциальной составляющей и одной из осей используемой системы координат. При этом вектор напряженности магнитного поля определяется модулем - |H| и направляющими углами - и . Для вычисления модуля - |H| и угла в плоскости, нормальной к поверхности обследуемого объекта, - используют следующие формулы:

|H| = [(H z) 2 +(H ) 2 ] 0,5 (5)

Arctg(H z:H ). (6)

Затем, проведя вычисления, аналогичные приведенным выше, можно получить полные характеристики вектора внутреннего напряжения в отдельной точке (локальной зоне) и построить векторные поля распределения внутренних напряжений в исследуемом изделии. Кроме того, если измерить каким-либо подходящим из известных методов (например, ультразвуковым) расстояние до аномальной зоны L и ее толщину L, a по координатам этой зоны на карте распределения полей напряжений вычислить площадь зоны S 3 , то можно рассчитать W 3 - величину энергии, запасенной в скоплении дислокаций и определяющей активность зарождения или роста трещины:

Следует отметить, что приведенные формулы показывают методику расчета параметров характеристик напряженно-деформированного состояния материала и могут служить для приближенных расчетов в объектах простой формы. При исследовании реальных объектов, а также для получения более точных результатов необходимо учитывать геометрию объекта и зоны, что отразится на формулах введением функций, описывающих геометрию и характер распределения напряженности магнитного поля и переходом к интегрированию по поверхности для внутренних напряжений и по объему для энергии. При этом для однотипных объектов могут быть разработаны специальные программы. Источники информации, принятые во внимание

1. Приборы для неразрушающего контроля материалов и изделий. Справочник, Т. 2, -М,: Машиностроение, 1986 г. 2. Неразрушающий контроль. , Кн. 3., Электромагнитный контроль, -М.: Высшая школа, 1992 г. 3. Патент РФ, М. кл. G 01 L 1/12, N 1727004, 1990 г. 4. Ч. Киттель, Элементарная физика твердого тела, -М.: Наука, 1969 г. 5. Фридман Я. Б., Механические свойства металлов, Ч. 1., Деформация и разрушение, Изд. "Машиностроение", Москва, 1974 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ определения характеристик напряженно-деформированного состояния материалов деталей и конструкций, заключающийся в измерении параметров магнитных полей на поверхности исследуемого объекта, по измерению которых определяют зоны скопления дислокаций, соответствующие аномальным зонам внутренних напряжений, отличающийся тем, что измеряют абсолютную величину максимума нормальной составляющей напряженности магнитного поля, дополнительно измеряют магнитную проницаемость материала в зоне максимума напряженности, вычисляют величину внутренних напряжений, по которой судят о напряженно-деформированном состоянии исследуемого материала. 2. Способ по п.1, отличающийся тем, что дополнительно определяют направление максимума тангенциальной составляющей напряженности магнитного поля, измеряют ее абсолютную величину и вычисляют вектор максимума внутренних напряжений. 3. Способ по п. 1 или 2, отличающийся тем, что дополнительно одним из известных способов измеряют расстояние от поверхности исследуемого объекта до зоны аномальных внутренних напряжений, вычисляют величину энергии, накопленной в этой зоне, по которой судят о степени активности зарождения и роста трещин. 4. Способ по п.1 или 2, отличающийся тем, что измерения проводят по всему телу исследуемого объекта и после соответствующих вычислений строят картину распределения скалярных или векторных полей внутренних напряжений. 5. Способ по п. 4, отличающийся тем, что измерения проводят повторно через определенный период эксплуатации исследуемого объекта, сравнивают картины распределения полей внутренних напряжений и по разности значений напряжений оценивают скорость деградации материала, а по изменению картины полей определяют зону и направление возможного разрушения.

Похожие публикации

Образец резюме ветеринара
Как члену строительного кооператива оформить земельный участок для строительства индивидуального жилого дома, образованный путем раздела земельного участка, предоставленного жск Процесс возведения жил
В каких случаях нельзя уволить сотрудника
Курс лекций по дисц. общий менеджмент. Основы менеджмента - краткое изложение Менеджмент в профессиональной деятельности лекции
Мероприятия по совершенствованию организации деятельности службы приема и размещения Проблемы внедрения
 информационных технологий в
 транспортных компаниях
Презентация химические свойства спиртов профильный уровень
С начинает образование евразийский экономический союз
Командообразующие мероприятия для коллектива Как можно быстро сплотить свой трудовой коллектив
Презентация к празднику
Профессиональное определение старшеклассников