Приказ на лицо ответственное за тепловое хозяйство. Большая энциклопедия нефти и газа. Где регистрируется приказ

Приказ на лицо ответственное за тепловое хозяйство. Большая энциклопедия нефти и газа. Где регистрируется приказ

Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

  • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
  • нагрев воздуха, потребного для вентиляции помещений;
  • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

Определение потерь тепла через наружные ограждения

Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

Q = 1/R х (tв – tн) х S, где:

  • Q – расход тепла, уходящего через конструкцию, Вт;
  • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
  • S – площадь этой конструкции, м2;
  • tв – температура, которая должна быть внутри дома, ºС;
  • tн – средняя уличная температура за 5 самых холодных дней, ºС.

Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20-21 ºС.

Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

R = δ / λ, где:

  • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
  • δ – толщина материала в метрах.

Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.

В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:

Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

Расход на подогрев вентиляционного воздуха

Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

Qвент = cmΔt, здесь:

  • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
  • Δt – разница температур на улице и внутри дома, ºС;
  • m – масса воздушной смеси, поступающей извне, кг;
  • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему - Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

Тепловая нагрузка от нагрева воды для ГВС

Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

Заключение

Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео:

На начальном этапе обустройства системы теплоснабжения любого из объектов недвижимости выполняется проектирование отопительной конструкции и соответствующие вычисления. Обязательно следует произвести расчет тепловых нагрузок, чтобы узнать объемы потребления топлива и тепла, необходимые для обогрева здания. Эти данные требуются, чтобы определиться с покупкой современного отопительного оборудования.

Тепловые нагрузки систем теплоснабжения

Понятие тепловая нагрузка определяет количество теплоты, которое отдают приборы обогрева, смонтированные в жилом доме или на объекте другого назначения. До того, как установить оборудование, данный расчет выполняют, чтобы избежать излишних финансовых расходов и других проблем, которые могут возникнуть в процессе эксплуатации отопительной системы.

Зная основные рабочие параметры конструкции теплоснабжения можно организовать эффективное функционирование обогревательных приборов. Расчет способствует реализации задач, стоящих перед отопительной системой, и соответствие ее элементов нормам и требованиям, прописанным в СНиПе.

Когда вычисляется тепловая нагрузка на отопление, даже малейшая ошибка может привести к большим проблемам, поскольку на основании полученных данных в местном отделении ЖКХ утверждают лимиты и другие расходные параметры, которые станут основанием для определения стоимости услуг.



Общая величина тепловой нагрузки на современную отопительную систему включает в себя несколько основных параметров:

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

Правильно расчетная тепловая нагрузка на отопление может быть определена при условии, что в процессе вычислений будут учтены абсолютно все, даже малейшие нюансы.



Перечень деталей и параметров довольно обширен:

  • назначение и тип объекта недвижимости . Для расчета важно знать, какое здание будет обогреваться - жилой или нежилой дом, квартира (прочитайте также: " "). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности . Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме . Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: " ");
  • особенности конструкции наружных ограждений , включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений . Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания . Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя . Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме . От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта . Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

Выполняется расчет тепловой нагрузки здания относительно отопления на этапе, когда проектируется объект недвижимости любого назначения. Это требуется для того, чтобы не допустить лишние денежные траты и правильно выбрать отопительное оборудование.

При проведении расчетов учитывают нормы и стандарты, а также ГОСТы, ТКП, СНБ.

В ходе определения величины тепловой мощности во внимание принимают ряд факторов:

Расчет тепловых нагрузок здания с определенной степенью запаса необходимо, чтобы не допустить в дальнейшем лишних финансовых расходов.

Наиболее необходимость таких действий важна при обустройстве теплоснабжения загородного коттеджа. В таком объекте недвижимости монтаж дополнительного оборудования и других элементов отопительной конструкции обойдется невероятно дорого.

Особенности расчета тепловых нагрузок

Расчетные величины температуры и влажности воздуха в помещениях и коэффициенты теплопередачи можно узнать из специальной литературы или из технической документации, прилагаемой производителями к своей продукции, в том числе и к теплоагрегатам.

Стандартная методика расчета тепловой нагрузки здания для обеспечения его эффективного обогрева включает последовательное определение максимального потока тепла от обогревательных приборов (радиаторов отопления), максимального расхода тепловой энергии в час (прочитайте: " "). Также требуется знать общий расход тепловой мощности в течение определенного периода времени, например, за отопительный сезон.

Расчет тепловых нагрузок, в котором учитывается площадь поверхности приборов, участвующих в тепловом обмене, применяют для разных объектов недвижимости. Такой вариант вычислений позволяет максимально правильно рассчитать параметры системы, которая обеспечит эффективный обогрев, а также произвести энергетическое обследование домов и зданий. Это идеальный способ определить параметры дежурного теплоснабжения промышленного объекта, подразумевающего снижение температуры в нерабочие часы.



Методы вычисления тепловых нагрузок

На сегодняшний день расчет тепловых нагрузок производится при помощи нескольких основных способов, среди которых:

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

Укрупненный расчет тепловой нагрузки здания используется в тех случаях, когда информации о проектируемом объекте недостаточно или требуемые данные не соответствуют действительным характеристикам.

Для проведения подобных вычислений отопления используется несложная формула:

Qmax от.=αхVхq0х(tв-tн.р.) х10-6, где:

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 - удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: "Как рассчитывается удельная отопительная характеристика здания – теория и практика ";
  • V – наружный объем постройки.

Исходя из вышеприведенных данных, выполняют укрупненный расчет тепловой нагрузки.

Виды тепловых нагрузок для расчетов

При осуществлении расчетов и выборе оборудования во внимание принимают разные тепловые нагрузки:

  1. Сезонные нагрузки , имеющие следующие особенности:

    Им присущи изменения в зависимости от температуры окружающего воздуха на улице;
    - наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
    - изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
    - расходы тепла вентиляционной системы в зависимости от времени суток.

  2. Постоянные тепловые нагрузки . В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  3. Сухое тепло . Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  4. Скрытое тепло . Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    Численность людей, одновременно находящихся в помещении;
    - наличие технологического или другого оборудования;
    - потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.



Регуляторы тепловых нагрузок

В комплект современных котлов промышленного и бытового назначения входят РТН (регуляторы тепловых нагрузок). Эти устройства (см. фото) предназначаются для поддержки мощности теплоагрегата на определенном уровне и не допускают скачков и провалов во время их работы.

РТН позволяют экономить на оплате за отопление, поскольку в большинстве случаев существуют определенные лимиты и их нельзя превышать. Особенно это касается промпредприятий. Дело в том, что за превышение лимита тепловых нагрузок следует наложение штрафных санкций.

Самостоятельно сделать проект и произвести расчеты нагрузки на системы, обеспечивающие отопление, вентиляцию и кондиционирование в здании, довольно сложно, поэтому данный этап работ, как правило, доверяют специалистам. Правда, при желании можно выполнить вычисления самостоятельно.

Gср - средний расход горячей воды.

Комплексный расчет тепловой нагрузки

Помимо теоретического решения вопросов, касающихся тепловых нагрузок, при проектировании выполняется ряд практических мероприятий. В состав комплексных теплотехнических обследований входит термографирование всех конструкций здания, включая перекрытия, стены, двери, окна. Благодаря данной работе удается определить и зафиксировать различные факторы, оказывающие влияния на потери тепла дома или промышленной постройки.

Тепловизионная диагностика наглядно показывает, каким будет реальный перепад температур при прохождении конкретного количества теплоты через один «квадрат» площади ограждающих конструкций. Также термографирование помогает определить

Благодаря теплотехническим обследованиям получают самые достоверные данные, касающиеся тепловых нагрузок и потерь тепла для конкретного здания в течение определенного временного периода. Практические мероприятия позволяют наглядно продемонстрировать то, что теоретические расчеты не могут показать – проблемные места будущего сооружения.

Из всего вышеизложенного можно сделать вывод, что расчеты тепловых нагрузок на ГВС, отопление и вентиляцию, аналогично гидравлическому расчету системы отопления, очень важны и их непременно следует выполнить до начала обустройства системы теплоснабжения в собственном доме или на объекте другого назначения. Когда подход к работе выполнен грамотно, безотказное функционирование отопительной конструкции будет обеспечено, причем без лишних затрат.

Видео пример расчета тепловой нагрузки на систему отопления здания:


Расчет тепловой нагрузки на отопление дома произведен по удельной теплопотере, потребительский подход определения приведенных коэффициентов теплопередачи – вот главные вопросы, которые мы с вами рассмотрим в данном посте. Здравствуйте, дорогие друзья! Мы произведем с вами расчет тепловой нагрузки на отопление дома (Qо.р) различными способами по укрупненным измерителям. Итак, что нам известно на данный момент:1. Расчетная зимняя температура наружного воздуха для проектирования отопления tн = -40 оС. 2. Расчетная (усредненная) температура воздуха внутри отапливаемого дома tв = +20 оС. 3. Объем дома по наружному обмеру V = 490,8 м3. 4. Отапливаемая площадь дома Sот = 151,7 м2 (жилая – Sж = 73,5 м2). 5. Градусо сутки отопительного периода ГСОП = 6739,2 оС*сут.

1. Расчет тепловой нагрузки на отопление дома по отапливаемой площади. Здесь все просто – принимается, что теплопотери составляют 1 кВт * час на 10 м2 отапливаемой площади дома, при высоте потолка до 2,5м. Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sот * wуд = 151,7 * 0,1 = 15,17 кВт. Определение тепловой нагрузки данным способом не отличается особой точностью. Спрашивается, откуда же взялось данное соотношение и насколько оно соответствует нашим условиям. Вот здесь то и надо сделать оговорочку, что данное соотношение справедливо для региона Москвы (tн = до -30 оС) и дом должен быть нормально утепленным. Для других регионов России удельные теплопотери wуд, кВт/м2 приведены в Таблице 1.

Таблица 1

Что еще надо учесть при выборе коэффициента удельных теплопотерь? Cолидные проектные организации требуют от «Заказчика» до 20-ти дополнительных данных и это оправдано, так как правильный расчет потерь тепла домом – один из основных факторов, определяющий, насколько комфортно будет находиться в помещении. Ниже приведены характерные требования с разъяснениями:
– суровость климатической полосы – чем ниже температура «за бортом», тем сильнее придется топить. Для сравнения: при -10 градусах – 10 кВт, а при -30 градусах – 15 кВт;
– состояние окон – чем герметичней и больше количество стекол, тем потери уменьшаются. К примеру (при -10 градусах): стандартная двойная рама – 10 кВт, двойной стеклопакет – 8 кВт, тройной стеклопакет – 7 кВт;
– отношения площадей окон и пола – чем больше окна, тем больше потерь. При 20 % – 9 кВт, при 30 % – 11 кВт, а при 50 % – 14 кВт;
– толщина стен или теплоизоляция напрямую влияют на потери тепла. Так при хорошей теплоизоляции и достаточной толщине стен (3 кирпича – 800 мм) требуется 10 кВт, при 150 мм утеплителя или толщине стены в 2 кирпича – 12 кВт, а при плохой изоляции или толщине в 1 кирпич – 15 кВт;
– число наружных стен – напрямую связанно со сквозняками и многосторонним воздействием промерзания. Если помещение имеет одну внешнюю стену, то требуется 9 кВт, а если – 4, то – 12 кВт;
– высота потолка хоть и не так значительно, но все же влияет на увеличение потребляемой мощности. При стандартной высоте в 2,5 м требуется 9,3 кВт, а при 5 м – 12 кВт.
Данное пояснение показывает, что грубый расчет требуемой мощности 1 кВт котла на 10 м2 отапливаемой площади, имеет обоснование.

2. Расчет тепловой нагрузки на отопление дома по укрупненным показателям согласно § 2.4 СНиП Н-36-73. Чтобы определить тепловую нагрузку на отопление данным способом, нам надо знать жилую площадь дома. Если она не известна, то принимается в размере 50% от общей площади дома. Зная расчетную температуру наружного воздуха для проектирования отопления, по таблице 2 определяем укрупненный показатель максимально-часового расхода тепла на 1 м2 жилой площади.

Таблица 2

Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sж * wуд.ж = 73,5 * 670 = 49245 кДж/ч или 49245/4,19=11752 ккал/ч или 11752/860=13,67 кВт

3. Расчет тепловой нагрузки на отопление дома по удельной отопительной характеристике здания. Определять тепловую нагрузку по данному способу будем по удельной тепловой характеристике (удельная теплопотеря тепла) и объема дома по формуле:

Qо.р = α * qо * V * (tв – tн) * 10-3 , кВт

Qо.р – расчетная тепловая нагрузка на отопление, кВт;
α – поправочный коэффициент, учитывающий климатические условия района и применяемый в случаях, когда расчетная температура наружного воздуха tн отличается от -30 оС, принимается по таблице 3;
qо – удельная отопительная характеристика здания, Вт/м3 * оС;
V – объем отапливаемой части здания по наружному обмеру, м3;
tв – расчетная температура воздуха внутри отапливаемого здания, оС;
tн – расчетная температура наружного воздуха для проектирования отопления, оС.
В данной формуле все величины, кроме удельной отопительной характеристики дома qо, нам известны. Последняя является теплотехнической оценкой строительной части здания и показывает тепловой поток, необходимый для повышения температуры 1 м3 объема постройки на 1 °С. Численное нормативное значение данной характеристики, для жилых домом и гостиниц, приведено в таблице 4.

Поправочный коэффициент α

Таблица 3

-10 -15 -20 -25 -30 -35 -40 -45 -50
α 1,45 1,29 1,17 1,08 1 0,95 0,9 0,85 0,82

Удельная отопительная характеристика здания, Вт/м3 * оС

Таблица 4

Итак, Qо.р = α* qо * V * (tв – tн) * 10-3 = 0,9 * 0,49 * 490,8 * (20 – (-40)) * 10-3 = 12,99 кВт. На стадии технико-экономического обоснования строительства (проекта) удельная отопительная характеристика должна являться одним из контрольных ориентиров. Все дело в том, что в справочной литературе, численное значение ее разное, поскольку приведена она для разных временных периодов, до 1958года, после 1958года, после 1975года и т.д. Кроме того, хоть и не значительно, но менялся также и климат на нашей планете. А нам бы хотелось знать значение удельной отопительной характеристики здания на сегодняшний день. Давайте попробуем определить ее самостоятельно.

ПОРЯДОК ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ОТОПИТЕЛЬНОЙ ХАРАКТЕРИСТИКИ

1. Предписывающий подход к выбору сопротивления теплопередаче наружных ограждений. В этом случае расход тепловой энергии не контролируется, а значения сопротивлений теплопередаче отдельных элементов здания должно быть не менее нормируемых значений, смотри таблицу 5. Здесь уместно привести формулу Ермолаева для расчета удельной отопительной характеристики здания. Вот эта формула

qо = [Р/S * ((kс + φ * (kок – kс)) + 1/Н * (kпт + kпл)], Вт/м3 * оС

φ – коэффициент остекления наружных стен, принимаем φ = 0,25. Данный коэффициент принимается в размере 25% от площади пола; Р – периметр дома, Р = 40м; S – площадь дома (10 *10), S = 100 м2; Н – высота здания, Н = 5м; kс, kок, kпт, kпл – приведенные коэффициенты теплопередачи соответственно наружной стены, световых проемов (окон), кровли (потолка), перекрытия над подвалом (пола). Определение приведенных коэффициентов теплопередачи, как при предписывающем подходе, так и при потребительском подходе, смотри таблицы 5,6,7,8. Ну что ж, со строительными размерами дома мы определились, а как быть с ограждающими конструкциями дома? Из каких материалов должны быть изготовлены стены, потолок пол, окна и двери? Дорогие друзья, вы должны четко понять, что на данном этапе нас не должен волновать выбор материала ограждающих конструкций. Спрашивается, почему? Да потому, что в выше приведенную формулу мы поставим значения нормируемых приведенных коэффициентов теплопередачи ограждающих конструкций. Так вот, независимо из какого материала будут выполнены эти конструкции и какова их толщина, сопротивление должно быть определенным. (Выписка из СНиП II-3-79* Строительная теплотехника).


(предписывающий подход)

Таблица 5


(предписывающий подход)

Таблица 6

И вот только теперь, зная ГСОП = 6739,2 оС*сут, методом интерполяции мы определяем нормируемые сопротивления теплопередаче ограждающих конструкций, смотри таблицу 5. Приведенные коэффициенты теплопередачи будут равны соответственно: kпр = 1/ Rо и приведены в таблице 6. Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок – kс)) + 1/Н * (kпт + kпл)] = = 0,37 Вт/м3 * оС
Расчетная тепловая нагрузка на отопление при предписывающем подходе будет равна Qо.р = α* qо * V * (tв – tн) * 10-3 = 0,9 * 0,37 * 490,8 * (20 – (-40)) * 10-3 = 9,81 кВт

2. Потребительский подход к выбору сопротивления теплопередаче наружных ограждений. В данном случае, сопротивление теплопередаче наружных ограждений можно снижать в сравнении с величинами указанными в таблице 5, пока расчетный удельный расход тепловой энергии на отопление дома не превысит нормируемый. Сопротивление теплопередаче отдельных элементов ограждения не должно быть ниже минимальных величин: для стен жилого дома Rс = 0,63Rо, для пола и потолка Rпл = 0,8Rо, Rпт = 0,8Rо, для окон Rок = 0,95Rо. Результаты расчета приведены в таблице 7. В таблице 8 приведены приведенные коэффициенты теплопередачи при потребительском подходе. Что касается удельного расхода тепловой энергии за отопительный период, то для нашего дома эта величина равна 120 кДж/ м2 * оС* сут. И определяется она по СНиП 23-02-2003. Мы же определим данную величину когда будем производить расчет тепловой нагрузки на отопление более подробным способом – с учетом конкретных материалов ограждений и их теплофизических свойств (п. 5 нашего плана по расчету отопления частного дома).

Нормируемое сопротивление теплопередаче ограждающих конструкций
(потребительский подход)

Таблица 7

Определение приведенных коэффициентов теплопередачи ограждающих конструкций
(потребительский подход)

Таблица 8

Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок – kс)) + 1/Н * (kпт + kпл)] = = 0,447 Вт/м3 * оС. Расчетная тепловая нагрузка на отопление при потребительском подходе будет равна Qо.р = α * qо * V * (tв – tн) * 10-3 = 0,9 * 0,447 * 490,8 * (20 – (-40)) * 10-3 = 11,85 кВт

Основные выводы:
1. Расчетная тепловая нагрузка на отопление по отапливаемой площади дома, Qо.р = 15,17 кВт.
2. Расчетная тепловая нагрузка на отопление по укрупненным показателям согласно § 2.4 СНиП Н-36-73. отапливаемой площади дома, Qо.р = 13,67 кВт.
3. Расчетная тепловая нагрузка на отопление дома по нормативной удельной отопительной характеристике здания, Qо.р = 12,99 кВт.
4. Расчетная тепловая нагрузка на отопление дома по предписывающему подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 9,81 кВт.
5. Расчетная тепловая нагрузка на отопление дома по потребительскому подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 11,85 кВт.
Как видите, дорогие друзья, расчетная тепловая нагрузки на отопление дома при разном подходе к ее определению, разнится довольно таки значительно – от 9,81 кВт до 15,17 кВт. Какую же выбрать и не ошибиться? На этот вопрос мы и постараемся ответить в следующих постах. Сегодня мы с вами выполнили 2-ой пункт нашего плана по дома. Кто еще не успел присоединяйтесь!

С уважением, Григорий Володин

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

    Показать всё

    Важность параметра

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    расчет нагрузки на отопление

    Выбор метода

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Расчет тепловой нагрузки и проектирование систем отопления Audytor OZC + Audytor C.O.

    Простые способы

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    В зависимости от площади

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток - погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Укрупненные вычисления

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн - tнро),

    где q0 - удельная тепловая характеристика строения;

    a - поправочный коэффициент;

    Vн - наружный объем строения;

    tвн, tнро - значения температуры внутри дома и на улице.


    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания - 0,49 Вт/м³*С.
    • Уточняющий коэффициент - 1.
    • Оптимальный температурный показатель внутри здания - 22 градуса.


    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу - Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким - Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Расчет тепловых нагрузок, г. Барнаул

    Сложная методика

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания - пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой - R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем - по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен - 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) - 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича - λ=0,56.
    • Здание было утеплено пенополистиролом - d =110 мм, λ=0,036.


    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен - R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя - R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель - R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят - (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой - 125,15*(22+15)= 4,63 кВт/час.

    Расчет тепловой мощности систем отопления

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу - 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы - (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, - 4,63+1,27=5,9 кВт/час.



Похожие публикации

Бизнес магия и секреты продаж Магия в бизнесе и карьере
Главный инженер: обязанности
Основа операторского фотомастерства: умение видеть и выбирать
Снегурочка (русская народная сказка)
Анализ существующей системы управления материальными потоками
Образец резюме ветеринара
Как члену строительного кооператива оформить земельный участок для строительства индивидуального жилого дома, образованный путем раздела земельного участка, предоставленного жск Процесс возведения жил
В каких случаях нельзя уволить сотрудника
Курс лекций по дисц. общий менеджмент. Основы менеджмента - краткое изложение Менеджмент в профессиональной деятельности лекции
Мероприятия по совершенствованию организации деятельности службы приема и размещения Проблемы внедрения
 информационных технологий в
 транспортных компаниях