Выбор технологий водоподготовки поверхностных вод. Технологии водоподготовки. Методы очистки питьевой воды. Целевые компоненты поверхностных и подземных вод при водоподготовке

Горячей (холодной) воды рассчитайте в особом порядке.

Произведите перерасчет размера платы за коммунальные услуги пропорционально количеству дней временного отсутствия потребителя. При этом учитывайте количество дней отсутствия по месту жительства без учета дня выбытия с места жительства и дня прибытия.

Перерасчет производите, только если есть заявление потребителя об этом. Заявление человек может подать:

  • до начала периода временного отсутствия;
  • в течение 30 дней по окончании периода временного отсутствия.

К заявлению он должен приложить документы, подтверждающие факт отсутствия по месту жительства. Это могут быть, например:

  • копия командировочного удостоверения или справка о командировке, заверенные по месту работы;
  • справка о нахождении на лечении в стационарном лечебном учреждении;
  • проездные билеты, оформленные на имя потребителя (их копии);
  • счета за проживание в гостинице, общежитии или другом месте временного пребывания или их копии;
  • свидетельство о регистрации по месту пребывания;
  • справка организации, осуществляющей охрану жилого помещения, в котором потребитель временно отсутствовал;
  • справка консульского учреждения или дипломатического, подтверждающая временное пребывание гражданина за пределами России;
  • копия паспорта с отметками о пересечении границы;
  • справка дачного, садового, огороднического товарищества, подтверждающая период временного пребывания гражданина по месту нахождения дачного, садового, огороднического товарищества;
  • иные документы, подтверждающие временное отсутствие потребителя.

Коммунальные платежи на общедомовые нужды при этом пересчитывать не нужно.

Такой порядок установлен в пунктах 86-93 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354.

Как рассчитать объем переданной тепловой энергии

Существуют три варианта расчета объема переданной тепловой энергии:

Расчет по новым правилам

Расчет объема переданной тепловой энергии по новым правилам (вариант 1) предполагает, что оплата за отопление квартир в многоквартирном доме производится только в отопительный период. Соответственно, сам расчет объема нужно производить также только в отопительный период. Порядок расчета этих показателей различается в зависимости от того, установлен в помещении индивидуальный (квартирный) прибор учета (а в доме - коллективный общедомовой прибор учета) или нет (п. 41-44 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354).

Расчет по новым правилам при наличии счетчиков

При наличии счетчиков применяйте следующие правила расчета объема тепловой энергии.

Объем переданной тепловой энергии на индивидуальные нужды определяйте на основании показаний индивидуальных или общих квартирных счетчиков.

Показания счетчиков снимайте не реже одного раза в шесть месяцев. При этом жильцы могут сами ежемесячно снимать показания счетчиков и передавать их управляющей компании (ТСЖ, ТСН). Данные от жильцов проверяйте не реже одного раза в шесть месяцев. В остальном порядок и условия приема показаний счетчиков должны быть зафиксированы в договоре управления многоквартирным домом.

Об этом сказано в подпункте «з» пункта 19, подпунктах «г» и «е(1)» пункта 31 и подпункте «к(1)» пункта 33 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354.

Если жилец не подал показания счетчиков, объем тепловой энергии за месяц будет составлять:

  • среднемесячный расход - первые шесть месяцев неподачи данных;
  • расход по нормативам потребления - далее (седьмой и следующие месяцы неподачи данных).

Об этом сказано в пункте 59, абзаце 2 пункта 60 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354.

Если индивидуальный счетчик жильца вышел из строя, объем потребленной тепловой энергии определяйте как:

Среднемесячный расход рассчитайте исходя из показаний конкретного счетчика за отопительный период. А если счетчик эксплуатируется менее шести месяцев - за фактический период его работы, но не менее трех месяцев отопительного периода. Количество месяцев отопительного сезона в году определяйте по региональным нормативным актам.

Если жилец более двух раз не пускает проверить состояние и показания счетчиков, составьте акт об отказе в допуске и рассчитывайте расход по нормативам потребления с учетом повышающих коэффициентов.

Повышающие коэффициенты к нормативам потребления отопления в жилых помещениях составляют:

Повышающие коэффициенты не применяют, если у жильца нет технической возможности установки счетчика. Отсутствие технической возможности установки счетчиков подтверждает акт по форме, утвержденной приказом Минрегиона России от 29 декабря 2011 г. № 627.

Такой порядок предусмотрен пунктами 59, 60, 60.2 и 81 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354, пунктом 3.1 приложения к Правилам, утвержденным постановлением Правительства РФ от 23 мая 2006 г. № 306.

Объем тепловой энергии, переданной для общедомовых нужд, определяйте по данным коллективных (общедомовых) счетчиков. Показания коллективного прибора учета снимайте с 23-го по 25-е число текущего месяца. Полученные данные вносите в специальный журнал. Об этом сказано в подпункте «е» пункта 31 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354.

Объем тепловой энергии, переданной для общедомовых нужд, складывается из нескольких составляющих. В том числе из объема, вызванного перерасходом (или недобором) внутри квартир, не имеющих индивидуальных приборов учета, расчет в которых происходит по нормативам, а не по индивидуальным приборам учета. Из-за наличия данной составляющей объем тепловой энергии, переданной для общедомовых нужд, может быть не только положительным, но и отрицательным (в случае, если в квартирах, не оборудованных приборами учета, фактический расход меньше нормативов).

Если общедомовой счетчик вышел из строя, объем тепловой энергии определяйте как:

  • среднемесячный расход - первые три месяца поломки счетчика;
  • расход по нормативам потребления с учетом повышающих коэффициентов - далее (четвертый и следующие месяцы поломки счетчика).

Повышающие коэффициенты к нормативам потребления отопления на общедомовые нужды составляют:

Повышающие коэффициенты не применяются, если нет технической возможности установить счетчик. Отсутствие технической возможности установки счетчиков подтверждает акт по форме, утвержденной приказом Минрегиона России от 29 декабря 2011 г. № 627.

Такой порядок следует из пунктов 44, 59.1, 60.1 и 81 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354, пункта 3.1 приложения к Правилам, утвержденным постановлением Правительства РФ от 23 мая 2006 г. № 306.

При положительной разнице между показаниями общедомового и индивидуального счетчиков для определения размера платы за коммунальные услуги необходимо рассчитать объем тепловой энергии, переданной для общедомовых нужд и приходящихся на конкретное помещение. При этом распределить между всеми помещениями можно суммы, не превышающие нормативные показатели. Суммы превышения можно распределить между потребителями только в случае, если решение об этом принято общим собранием собственников. В противном случае указанную разницу управляющая компания (ТСЖ, ТСН) должна покрывать за счет собственных средств (п. 44 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354).

Если объем тепловой энергии по данным общедомового счетчика оказался меньше, чем потребили жители согласно показаниям индивидуальных счетчиков и потребления по нормативам, распределение необходимо выполнять пропорционально размеру общей площади каждого жилого помещения (квартиры). То есть распределять нужно только между жилыми помещениями.

Если сумма для уменьшения, полученная в результате расчета, будет больше, чем потребил тот или иной абонент, то уменьшение производите только до 0, не перенося остаток на прошлые или будущие периоды.

Такой вывод следует из пункта 47 Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354.

Пример расчета объема переданной тепловой энергии. В многоквартирном доме имеется общедомовой счетчик, индивидуальных (квартирных) счетчиков нет

В управлении компании «Альфа» находится многоквартирный дом. В доме имеется общедомовой прибор учета тепловой энергии. Общая площадь всех помещений в доме (в т. ч. относящихся к общему имуществу) - 4900,6 кв. м. Общая площадь всех жилых и нежилых помещений в доме - 2710,8 кв. м.

В феврале по общедомовому счетчику было зафиксировано потребление 25 Гкал.

Объем переданной тепловой энергии в отношении 1-комнатной квартиры, не оборудованной счетчиком, площадью 42 кв. м составляет:
25 Гкал × 42 кв. м: 2710,8 кв. м = 0,38733 Гкал.

Расчет по новым правилам в отсутствие счетчиков

Если индивидуальные и общедомовые счетчики не установлены, расчет объема переданной тепловой энергии производите по нормативам (п. 42(1) Правил, утвержденных постановлением Правительства РФ от 6 мая 2011 г. № 354). Нормативы устанавливают региональные власти (п. 5 постановления Правительства РФ от 6 мая 2011 г. № 354).

Более подробно порядок расчета по нормативам см. в таблице .

Расчет с применением коэффициента периодичности платежа

Расчет с применением коэффициента периодичности платежа (вариант 2) можно применять, только если отсутствуют и общедомовые и индивидуальные (квартирные) приборы учета.

Расчет объема переданной тепловой энергии производите по нормативам, а плату начисляйте ежемесячно.

Коэффициент периодичности платежа рассчитайте по формуле:

Об этом сказано в подпункте «а» пункта 1 постановления Правительства РФ от 27 августа 2012 г. № 857 и пунктах 1 и 2 Правил, утвержденных постановлением Правительства РФ от 27 августа 2012 г. № 857.

Количество месяцев отопительного сезона в году определяйте по региональным нормативным актам.

Более подробно о расчете объема переданной тепловой энергии с применением коэффициента периодичности платежа см. таблицу .

Расчет по старым правилам

Расчет по старым правилам (вариант 3) предполагает начисление платы за отопление во все месяцы года (подп. «б» п. 1 постановления Правительства РФ от 27 августа 2012 г. № 857). Его можно применять, если есть решение региональных властей об этом (см., например, распоряжение Министерства ЖКХ Московской области от 13 сентября 2012 г. № 33).

Этот вариант расчета можно применять только до момента его отмены региональными властями, но однозначно он утрачивает силу 1 июля 2016 года (п. 6 постановления Правительства РФ от 6 мая 2011 г. № 354, подп. «б» п. 2 постановления Правительства РФ от 17 декабря 2014 г. № 1380).

Подробнее о расчете объема переданной тепловой энергии по старым правилам см. таблицу .

В данном разделе подробно описаны существующие традиционные методы водоподготовки, их преимущества и недостатки, а также представлены современные новые методы и новые технологии улучшения качества воды в соответствии с требованиями потребителей.

Основные задачи водоподготовки - это получение на выходе чистой безопасной воды пригодной для различных нужд: хозяйственно-питьевого, технического и промышленного водоснабжения с учётом экономической целесообразности применения необходимых методов водоочистки, водоподготовки. Подход к водоочистке не может быть везде одинаковым. Различия обусловлены составом воды и требованиями к её качеству, которые существенно различаются в зависимости от назначения воды (питьевой, технической и т.д.). Однако существует набор типичных процедур, используемых в системах водоочистки и последовательность, в которой используются эти процедуры.


Основные (традиционные) методы обработки воды.

В практике водоснабжения в процессе очистки и обработки вода подвергается осветлению (освобождение от взвешенных частиц), обесцвечиванию (устранение веществ, придающих воде цвет), обеззараживанию (уничтожение находящихся в ней болезнетворных бактерий). При этом в зависимости от качества исходной воды в некоторых случаях дополнительно применяются и специальные методы улучшения качества воды: умягчение воды (понижение жесткости, обусловленной наличием солей кальция и магния); фосфатирование (для более глубокого умягчения воды); опреснение , обессоливание воды (снижение общей минерализации воды); обескремнивание, обезжелезивание воды (освобождение воды от растворимых соединений железа); дегазация воды (удаление из воды растворимых газов: сероводорода H 2 S, CO 2 , O 2); дезактивация воды (удаление из воды радиоактивных веществ.); обезвреживание воды (удаление ядовитых веществ из воды), фторирование (добавления в воду фтора) или обесфторирование (удаление соединений фтора); подкисление или подщелачивание (для стабилизации воды). Иногда требуется устранять привкусы и запахи, предотвращать коррозионное действие воды и т.п. Те или иные комбинации указанных процессов применяют в зависимости от категории потребителей и качества воды в источниках.

Качество воды в водном объекте и , определяется целым рядом показателей (физических, химических и санитарно-бактериологических), в соответствии с назначением воды и установленными нормативами качества . Подробно об этом в следующем разделе. Сравнивая данные качества воды (полученные по результатам анализа) с требованиями потребителей определяют мероприятия для ее обработки.

Проблема очистки воды охватывает вопросы физических, химических и биологических изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

Способ обработки воды, состав и расчетные параметры очистных сооружений для технического водоснабжения и расчетные дозы реагентов устанавливают в зависимости от степени загрязнения водного объекта, назначения водопровода, производительности станции и местных условий, а также на основании данных технологических исследований и эксплуатации сооружений, работающих в аналогичных условиях.

Очистка воды производится в несколько этапов. Мусор и песок удаляются на этапе предочистки. Сочетание первичной и вторичной очистки, проводимое на водоочистных сооружениях (ВОС), позволяет избавиться от коллоидного материала (органических веществ). Растворенные биогены устраняются при помощи доочистки. Чтобы очистка была полной, водоочистные сооружения должны устранить все категории загрязнителей. Для этого существует множество способов.

При соответствующей доочистке, при качественной аппаратуре ВОС можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.

Основные способы водоочистки

Осветление воды

Осветление - это этап водоочистки, в процессе которого происходит устранение мутности воды путем снижения содержания в ней взвешенных механических примесей природных и сточных вод. Мутность природной воды, особенно поверхностных источников в паводковый период, может достигать 2000-2500 мг/л (при норме для воды хозяйственно-питьевого назначения - не более 1500 мг/л).

Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры , представляющие собой наиболее распространенные водоочистные сооружения. Одним из наиболее широко применяемых на практике способов снижения в воде содержания тонкодисперсных примесей является их коагулирование (осаждение в виде специальных комплексов - коагулянтов) с последующим осаждением и фильтрованием. После осветления вода поступает в резервуары чистой воды.

Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Осветление фильтрованием с предварительным коагулированием способствуют значительному снижению бактериальной загрязненности воды. Однако среди оставшихся после водоочистки в воде микроорганизмов могут оказаться и болезнетворные (бациллы брюшного тифа, туберкулёза и дизентерии; вибрион холеры; вирусы полиомиелита и энцефалита), являющиеся источником инфекционных заболеваний. Для окончательного их уничтожения вода, предназначенная для хозяйственно-бытовых целей, должна быть в обязательном порядке подвергнута обеззараживанию .

Недостатки коагуляции , отстаивания и фильтрации: затратные и недостаточно эффективные методы водоочистки, в связи с чем требуются дополнительные методы улучшения качества.)

Обеззараживание воды

Обеззараживание или дезинфекция - завершающий этап процесса водоочистки. Цель - это подавление жизнедеятельности содержащихся в воде болезнетворных микробов. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

В технологии водоподготовки известен ряд методов обеззараживания воды, который можно классифицировать на пять основных групп: термический ; сорбция на активном угле; химический (с помощью сильных окислителей); олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей). Из перечисленных методов наиболее широко распространены методы третьей группы. В качестве окислителей применяют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору , хлорной извести, гипохлориду натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

Обеззараживанию подлежит вода, прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка или отстаивание, фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном состоянии бактерии и вирусы, оставаясь вне воздействия обеззараживающих агентов.

Обеззараживание воды сильными окислителями.

В настоящее время на объектах жилищно-коммунального хозяйства для обеззараживания воды, как правило, применяется хлорирование воды. Если вы пьете воду из-под крана, то должны знать, что в ней есть хлорорганические соединения, количество которых после процедуры обеззараживании воды хлором достигает 300 мкг/л. Причем это количество не зависит от начального уровня загрязнения воды, эти 300 веществ образуются в воде благодаря хлорированию. Потребление такой питьевой воды очень серьезно может сказаться на здоровье. Дело в том, что при соединении органических веществ с хлором образуются тригалометаны. Эти производные метана обладают выраженным канцерогенным эффектом, что способствует образованию раковых клеток. При кипячении хлорированной воды в ней образуется сильнейший яд - диоксин. Уменьшить содержание тригалометанов в воде можно, снизив количество используемого хлора или заменив его другими дезинфицирующими веществами, например, применяя гранулированный активированный уголь для удаления образующихся при очистке воды органических соединений. И, конечно, нужен более детальный контроль за качеством питьевой воды.

В случаях же высокой мутности и цветности природных вод распространенно используют предварительное хлорирование воды, однако этот способ обеззараживания, как было описано выше, не только не достаточно эффективный, но и просто вредный для нашего организма.

Недостатки хлорирования: недостаточно эффективный и при этом приносит необратимый вред для здоровья, так как образование канцерогена тригалометанов способствует образованию раковых клеток, а диоксина - привести к сильнейшему отравлению организма.

Обеззараживать воду без хлора экономически нецелесообразно, поскольку альтернативные методы обеззараживания воды (например,обеззараживаниес помощью ультрафиолетового излучения ) достаточно затратные. Был предложен альтернативный хлорированию метод обеззараживания воды с помощью озона.

Озонирование

Более современной процедурой обеззараживания воды считается очищение воды с помощью озона. Действительно, озонирование воды на первый взгляд безопаснее хлорирования, но тоже имеет свои недостатки. Озон очень нестоек и быстро разрушается, поэтому его бактерицидное действие непродолжительно. А ведь вода должна еще пройти через водопроводную систему, прежде чем оказаться в нашей квартире. На этом пути ее поджидает немало неприятностей. Ведь не секрет, что водопроводы в российских городах крайне изношены.

Кроме того, озон тоже вступает в реакцию со многими веществами в воде, например с фенолом, и образовавшиеся в результате продукты еще токсичнее хлорфенольных. Озонирование воды оказывается крайне опасным в тех случаях, если в воде присутствуют ионы брома хотя бы в самых ничтожных количествах, трудно определяемых даже в лабораторных условиях. При озонировании возникают ядовитые соединения брома - бромиды, опасные для человека даже в микродозах.

Метод озонирования воды очень хорошо зарекомендовал себя для обработки больших масс воды - в бассейнах, в системах коллективного пользования, т.е. там, где нужно более тщательное обеззараживание воды. Но необходимо помнить, что озон, как и продукты его взаимодействия с хлорорганикой ядовитый, поэтому присутствие больших концентраций хлорорганики на стадии водоочистки может быть чрезвычайно вредным и опасным для организма.

Недостатки озонирования: бактерицидное действие непродолжительное, в реакции с фенолом еще токсичнее хлорфенольных, что более опасно для организма, чем хлорирование.

Обеззараживание воды бактерицидными лучами.

ВЫВОДЫ

Все вышеперечисленные методы недостаточно эффективны, не всегда безопасны, и более того экономически нецелесообразны: во-первых - дорогостоящие и очень затратные, требующие постоянных расходов на обслуживание и ремонт, во-вторых - с ограниченным сроком службы, и в третьих - с большим расходом энергоресурсов.

Новые технологии и инновационные методы улучшения качества воды

Внедрение новых технологий и инновационных методов водоподготовки позволяет решать комплекс задач, обеспечивающих:

  • производство питьевой воды, отвечающей установленным стандартам и ГОСТАм, удовлетворяющей требованиям потребителей;
  • надежность очистки и обеззараживания воды;
  • эффективную бесперебойную и надежную работу водоочистных сооружений;
  • снижение себестоимости водоочистки и водоподготовки;
  • экономию реагентов, электроэнергии и воды на собственные нужды;
  • качество производства воды.

Среди новых технологий улучшения качества воды можно выделить:

Мембранные методы на основе современные технологий (включающие в себя макрофильтрацию; микрофильтрацию; ультрафильтрацию; нанофильтрацию; обратный осмос). Применяются для опреснения сточных вод , решают комплекс задач водоочистки, но очищенная вода не значит еще, что она полезная для здоровья. Более того данные методы являются дорогостоящими и энергоёмкими, требующими постоянные расходы на обслуживание.

Безреагентные методы водоподготовки. Активация (структурирование) жидкости. Способов активации воды на сегодняшний день известно множество (например, магнитные и электромагнитные волны; волны ультразвуковых частот; кавитация; воздействие различными минералами, резонансные и др.). Метод структурирования жидкости обеспечивает решение комплекса задач водоподготовки (обесцвечивание, умягчение, обеззараживание, дегазацию, обезжелезивание воды и т.д.), при этом исключает химводоподготовку.

Показатели качества воды зависят от применяемых методов структурирования жидкости и зависят от выбора применяемых технологий, среди которых можно выделить:
- устройства магнитной обработки воды;

- электромагнитные методы;
- кавитационный метод обработки воды;
- резонансная волновая активация воды
(бесконтактная обработка на основе пьезокристаллов).

Гидромагнитные системы (ГМС) предназначены для обработки воды в потоке постоянным магнитным полем специальной пространственной конфигурации (применяются для нейтрализации накипи в теплообменном оборудовании; для осветления воды, например, после хлорирования). Принцип работы системы - магнитное взаимодействие ионов металлов, присутствующих в воде (магнитный резонанс) и одновременно протекающий процесс химической кристаллизации. ГМС основана на циклическом воздействии на воду, подаваемую в теплообменные аппараты магнитным полем заданной конфигурации, создаваемым высокоэнергетическими магнитами. Метод магнитной обработки воды не требует каких-либо химических реактивов и поэтому является экологически чистым. Но есть и недостатки . В ГМС используются мощные постоянные магниты на основе редкоземельных элементов. Они сохраняют свои свойства (силу магнитного поля) в течение очень длительного времени (десятки лет). Однако, если их перегреть выше 110 - 120 С, магнитные свойства могут ослабнуть. Поэтому ГМС необходимо монтировать там, где температура воды не превышает этих значений. То есть, до её нагрева, на линии обратки.

Недостатки магнитных систем: применение ГМС возможно при температуре не выше 110 - 120° С; недостаточно эффективный метод; для полной очистки необходимо применение в комплексе с другими методами, что в итоге экономически нецелесообразно.

Кавитационный метод обработки воды. Кавитация - образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. Суть кавитации - другое фазовое состояние воды. В условиях кавитации вода переходит из её естественного состояния в пар. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении ее скорости (гидродинамическая кавитация), либо при прохождении акустической волны во время полупериода разрежения (акустическая кавитация). Кроме того, резкое (внезапное) исчезновение кавитационных пузырьков приводит к образованию гидравлических ударов и, как следствие, к созданию волны сжатия и растяжения в жидкости с ультразвуковой частотой. Метод применятся для очистки от железа, солей жесткости и других элементов, превышающих ПДК, но слабо эффективен при обеззараживании воды. При этом значительно потребляет электроэнергию, дорогой в обслуживании с расходными фильтрующими элементами (ресурс от 500 до 6000 м 3 воды).

Недостатки: потребляет электроэнергию, недостаточно эффективный и дорогой в обслуживании.

ВЫВОДЫ

Вышеперечисленные методы наиболее эффективные и экологически чисты по сравнению с традиционными методами водоочистки и водоподготовки. Но имеют те или иные недостатки: сложность установок, высокая стоимость, необходимость в расходных материалах, сложности в обслуживании, необходимы значительные площади для установки систем водоочистки; недостаточная эффективность, и кроме этого ограничения по применению (ограничения по температуре, жесткости, pH воды и пр.).

Методы бесконтактной активации жидкости (БОЖ). Резонансные технологии.

Обработка жидкости осуществляется бесконтактным путем. Одно из преимуществ данных методов - структурирование (или активация) жидких сред, обеспечивающее все вышеперечисленные задачи активацией природных свойств воды без потребления электроэнергии.

Наиболее эффективная технология в этой области - Технология NORMAQUA (резонансная волновая обработка на основе пьезокристаллов ), бесконтактная, экологически чиста, без потребления электроэнергии, не магнитная, не обслуживаемая, срок эксплуатации - не менее 25 лет. Технология создана на основе пьезокерамических активаторов жидких и газообразных сред, представляющих собой резонаторы-инверторы, испускающие волны сверхмалой интенсивности. Как и при воздействии электромагнитных и ультразвуковых волн, под влиянием резонансных колебаний рвутся неустойчивые межмолекулярные связи, а молекулы воды выстраиваются в естественную природную физико-химическую структуру в кластеры.

Применение технологии позволяет полностью отказаться от химводоподготовки и дорогостоящих систем и расходных материалов водоподготовки, и добиться идеального баланса между поддержанием высочайшего качества воды и экономией расходов на эксплуатацию оборудования.

Снизить кислотность воды (повысить уровень рН);
- экономить до 30% электроэнергии на перекачивающих насосах и размывать ранее образовавшиеся отложения накипи за счет снижения коэффициента трения воды (повышения времени капиллярного всасывания);
- изменить окислительно-восстановительный потенциал воды Eh;
- снизить общую жесткость;
- повысить качество воды: ее биологическую активность, безопасность (обеззараживание до 100%) и органолептику.


Проблема
Изношенность инженерных сетей, устаревшие системы водоподготовки и водоочистки и, как следствие, окислы железа, накипь, жесткость воды и ее последующее хлорирование – все это комплекс проблем, с которым ежедневно сталкиваются жилищно-коммунальные службы. Накапливаемые годами в трубах железная окалина, мелкая взвесь и пристеночная слизь во время перепадов давления смешиваются с водой, и уже в таком виде попадают в дома. Такая вода имеет железистый привкус водопроводных труб, различные органические примеси, которые невозможно убрать кипячением, и специфический цвет. Между тем, в промышленной подготовке новые инновационные методы очистки появляются почти ежегодно. Задача промышленной подготовки состоит в том, чтобы не только обезопасить от примесей воду, но и сохранить дорогостоящее оборудование.

Методы
Методы, которые сегодня применяются в водоподготовке, разнообразны, начиная с простейших фильтров, задерживающих твердые частицы, и заканчивая сложными комплексными системами. Последние можно часто встретить на крупных предприятиях тепловой энергетики. Основная сложность, которая встречается при проектировании систем, как бытовой водоподготовки, так и промышленной водоподготовки заключается в том, что для полной очистки приходится комбинировать различные методы. Вторая проблема, которая в обязательном порядке учитывается при водоподготовке – различный состав исходной воды.
Чаще всего при промышленной водоподготовке производится обезжелезивание воды, в то время как бытовая водоподготовка акцентирует внимание на таких элементах, как: магний, калий, кальций. Повышенное содержание железа в воде придает ей буроватую окраску, неприятный металлический привкус. Повышенное содержание железа, марганца вызывает зарастание трубопроводов, что снижает скорости потоков, давление в трубопроводах.
Однако превращение воды в дистиллированную вредно для организма, поэтому некоторые системы водоподготовки работают в два этапа: сначала водоподготовка предусматривает полную очистку, а затем выполняется строго дозированная минерализация.
Мембранный метод основан на пропускании загрязненного раствора через полупроницаемую перегородку с отверстиями меньшими, чем размер частиц загрязнений. В процессе очистки происходит: макро- и микрофильтрация, ультра- и нанофильтрация, обратный осмос. Вод очищается от крупных и коллоидных частиц, мелких взвесей, микроорганизмов, растворенных ионов и органических молекул.
Эффективность удаления методом обратного осмоса различных ионов зависит от их заряда и размера, определяющих степень гидратации, и увеличивается с ростом этих характеристик.
Однако использование этого метода имеет ряд ограничений. Вода, подаваемая на мембраны не должна содержать железа, грубых механических примесей, должна быть умягченной и т.п. Это необходимо для предотвращения отложения малорастворимых солей на поверхности мембран и их разрушения.
Нередко применяется и водоподготовка с использованием ультрафиолетового излучения. Ее плюсы: безопасность для здоровья людей, быстрота и экономическая выгода.
Снижение жесткости (умягчение воды), еще один важный момент, который нужно учитывать. В противном случае происходит быстрое разрушение котлов и труб отложениями солей. Умягчители воды позволяют устранить все проблемы, связанные с присутствием в воде солей жесткости.
Еще один вопрос, о котором долго спорят, обеззараживание воды, которое является важнейшем элементом водоподготовки. К примеру, на водопроводных станциях Петербурга обеззараживание хлором осуществлялось с 1911 по 2008 годы. У соединений хлора – высокая длительность обеззараживающего эффекта, и в городах с большой протяженностью водопроводной сети до сих пор не существовало иного способа поддерживать эпидемиологическую безопасность питьевой воды во время ее транспортировки к потребителям. Однако именно Санкт-Петербург стал первым мегаполисом в мире, который полностью отказался от использования жидкого хлора при обеззараживании воды. Еще в 2003 году ГУП «Водоканал Санкт-Петербурга» впервые в процессе обеззараживания воды применил гипохлорит натрия в качестве альтернативы жидкому хлору. За пять лет были введены в эксплуатацию заводы по производству низкоконцентрированных растворов гипохлорита натрия из поваренной соли.

Отопление
Вторая проблема, связанная с водоподготовкой, это система отоплений зданий, столь актуальная в начале каждого осенне-зимнего сезона. Одна из главных трудностей, с которой сталкиваются эксплуатационные организации, это образование твердых отложений на внутренней поверхности котлов, теплообменников и трубопроводов тепловых станций. Образование этих отложений приводит к серьезным потерям энергии, достигающих 60%. Большие отложения могут полностью блокировать работу системы, привести к закупориванию, ускорить коррозию и в итоге вывести из строя дорогое оборудование. Все эти проблемы возникают из-за того, в водогрейных котельных для подпитки тепловых сетей, как правило, либо отсутствуют установки водоподготовки, либо те, что установлены, морально и физически уже устарели.
«Источниками загрязнений сетевой воды являются, главным образом, системы отоплений зданий и сооружений, сетевые трубопроводы, а также попадание посторонних примесей при ремонте участков тепловых сетей, – комментирует С.П. Батуев, генеральный директор ООО СПКФ «ВАЛЁР». – Причина образования железоокисных отложений в системах отопления и трубопроводах тепловой сети в так называемой стояночной коррозии и отсутствии консервации оборудования в межотопительный период. Учитывая, что интенсивность стояночной коррозии в среднем в 15-20 раз выше интенсивности коррозии, протекающей в период эксплуатации, а также продолжительность межотопительного периода – в среднем 5 месяцев, это приводит к накоплению большого количества железоокисных отложений в отопительных системах, сетях и оборудовании к началу отопительного периода. Эти отложения при включении циркуляции теплоносителя в большом количестве попадают в тепловые сети. Концентрация загрязнений в обратной сетевой воде в этот период может многократно превышать нормативные значения по содержанию железа, взвешенных частиц, цветности, прозрачности, мутности».
Современные технологии водоочистки значительно уменьшают риск выхода из строя котельного оборудования. Выбор оборудования для очистки сетевой воды в значительной степени зависит от физико-химических свойств загрязнений. В связи с этим, большую важность представляют данные, характеризующие состав, структуру, свойства загрязнений. Причем следует учитывать, что концентрация и дисперсный состав механических загрязнений могут значительно меняться в течение отопительного периода.
Существует ряд способов решения этой проблемы, каждый из которых связан с различными капитальными и эксплуатационными затратами. Из множества известных вариантов предотвращения образования накипи в настоящее время получили распространение лишь несколько: электромагнитная обработка воды, технология Na-катионирования, дозирование в воду антинакипинов последнего поколения, которые позволяют обеспечить полную защиту котельного оборудования от образования отложений. Обработка воды производится с использованием комплексов, включающих дозирующие насосы Tekna, ProMinent и емкость с рабочим раствором. Данный способ позволяет полностью отойти от технологии умягчения воды, то есть исключить затраты на приобретение соли, химические же промывки теплообменников и котлового оборудования можно осуществлять не чаще 1 раза в 3 года.
Технология обратного осмоса позволяет обойтись без высоких эксплуатационных расходов на реагенты и позволяет сбрасывать в канализацию или очистные сооружения воду с солесодержанием, в большинстве случаев, не превышающем допустимые значения. Однако такие установки имеют высокую стоимость.
При выборе устройств для очистки сетевой воды от загрязнений, наряду с характером загрязнений, важное значение имеют такие показатели, как эффективность очистки, возможная производительность по воде и рабочий диапазон расходов, простота и удобство эксплуатации. Подобных недостатков лишены устройства, использующие гидродинамические принципы очистки (например, сочетание процессов инерции и гравитации). Комбинированное использование этих процессов реализовано в инерционно-гравитационных грязевиках ГИГ.

В чем экономия?
Специалисты подсчитали, что мероприятия по водоподготовке дают экономию топлива от 20 до 40%, увеличивается срок работы котлов и котельного оборудования до 25-30 лет, значительно уменьшаются расходы на капитальный и текущий ремонт котлов и теплового оборудования. Окупаемость установок водоподготовки зависит от их производительности и составляет от 6 месяцев до 1,5 – 2 лет.


Полная или частичная перепечатка материалов - только с письменного разрешения редакции!

Готовность тепловых станций и котельных к зиме, в рамках всероссийской программы подготовки к отопительному сезону, вызывает повышенное внимание. Необходимость проведения работ, обеспечивающих безаварийную работу теплового оборудования, выходит на первый план. Одной из главных проблем, с которой сталкиваются эксплуатационные организации - это образование твердых отложений на внутренней поверхности котлов, теплообменников и трубопроводов тепловых станций. Образование этих отложений приводит к серьезным потерям энергии. Эти потери могут достигать 60%. Рост отложений существенно снижает теплоотдачу. Большие отложения могут полностью блокировать работу системы, привести к закупориванию, ускорить коррозию и в итоге вывести из строя дорогое оборудование.


Все эти проблемы возникают из-за того, что для подпитки тепловых сетей, как правило, либо отсутствуют для котельных установок, либо те, что установлены, морально и физически уже устарели. Исходная вода часто подается в отопительную систему без необходимой обработки и подготовки.


При этом надёжность и экономичность работы котельного, теплоэнергетического и другого подобного оборудования в значительной степени зависит от эффективности проведенной водоподготовки. Крайняя изношенность оборудования многих котельных зачастую связана с тем, что последний проводилась очень и очень давно.



Насколько же экономически оправданно тратиться на водоподготовку?


Специалисты подсчитали, что мероприятия по водоподготовке дают экономию топлива от 20 до 40%, увеличивается срок работы котлов и котельного оборудования до 25-30 лет, значительно уменьшаются расходы на капитальный и текущий в целом, так и отдельных элементов, котлов и теплового оборудования. Окупаемость установок водоподготовки зависит от их производительности и составляет от 6 месяцев до 1,5 - 2 лет.


Значительное количество объектов, на которых установлены современные системы водоподготовки различной производительности и назначения, и повышенный интерес эксплуатационных служб к этой проблеме позволяет утверждать о том, что люди от которых зависит тепло в наших домах поняли, что применение установок водоподготовки, созданных на основе современных технологий и конструктивных решений - залог надёжной, бесперебойной, безаварийной работы, как небольших котельных, так и крупных энергоблоков.

Краснов М.С., к.т.н., инженер-технолог компании "Экодар"

Водоподгото́вка – процесс изменения состава воды путём удаления органических и минеральных примесей и микроорганизмов или добавления веществ для приведения её состава и свойств в соответствие с требованиями потребителей. По конечному назначению использования воды различают водоподготовку для питьевых (в т. ч. коммунально-бытовых) и промышленных нужд.

Вода для питьевых нужд должна удовлетворять требованиям санитарно-эпидемиологической и радиационной безопасности, быть безвредной по химическому составу и обладать благоприятными органолептическими свойствами. Это достигается путём удаления биогенных элементов, тяжёлых металлов, галогенопроизводных, бактерий и пр., а также, в случае необходимости, добавления недостающих микроэлементов.

При подготовке воды для промышленных нужд из воды удаляются грубодисперсные и коллоидные примеси, соли и микроорганизмы для предотвращения образования накипи, коррозии металлов, засорения трубопроводов и загрязнения обрабатываемых материалов при использовании воды в технологических процессах. Так, в теплоэнергетике, где вода является теплоносителем, важно удалить из воды соли жёсткости и другие примеси в ионной форме, т. к. повышение температуры в процессе нагревания приводит к образованию накипи в технических элементах системы – котлах, трубопроводах, градирнях. Технологические стадии водоподготовки для промышленных нужд и для питьевых целей нередко полностью совпадают.

История водоподготовки

Первое упоминание о применении методов подготовки питьевой воды для повышения её качества – улучшения вкуса и удаления запаха – датируется IV тысячелетием до н. э. Тогда применялись такие методы водоподготовки, как фильтрация через древесный уголь, отстаивание на солнце и кипячение. Для устранения мутности , т. е. удаления из воды взвешенных частиц, древние египтяне еще за 1,5 тыс. лет до н. э. использовали алюминиевые квасцы. В XVII в. для подготовки питьевой воды стал использоваться метод фильтрации, однако степень очистки воды была недостаточной. С начала XIX в. песчаные фильтры применялись в большинстве городов Европы. В 1806 г. в Париже была запущена в эксплуатацию первая крупная станция водоподготовки, где вода проходила стадии отстаивания и фильтрации через песчаные и угольные фильтры. В 1870 г. Р. Кохом и Д. Листером было доказано, что микроорганизмы, находящиеся в источниках водоснабжения , могут вызывать инфекционные заболевания. Впоследствии, в начале ХХ в. эти открытия привели к применению методов обеззараживания питьевой воды. В 1906 г. в Ницце для дезинфекции питьевой воды был использован метод озонирования, а в 1908 г. в США в качестве дезинфектанта стал применяться гипохлорит кальция. С 1926 г. для удаления взвешенных частиц начали применять метод коагуляции. В 1940-х гг. началось развитие ионообменных технологий обессоливания воды, а в 1957 г. появились первые мембранные фильтры, однако в широкую практику водоподготовки они вошли гораздо позднее. Во второй половине ХХ в. в большинстве развитых стран стали применяться комплексные схемы подготовки питьевой воды, включающие технологии отстаивания, фильтрации, коагуляции, обеззараживания и др.

Целевые компоненты поверхностных и подземных вод при водоподготовке

При подготовке воды для питьевых или промышленных нужд в зависимости от направления конечного применения до нормативных значений доводится содержание представителей следующих групп веществ:

Химический и биологический состав воды определяет выбор применяемых технологий водоподготовки и используемых технологических схем.

Технологии водоподготовки

При водозаборе из поверхностного водного объекта (река , водохранилище , озеро и т.д.), первый этап подготовки воды – предварительная очистка, включающая, как правило, следующие методы:

  • процеживание – процесс пропускания воды через водопроницаемые перегородки различных конструкций для удаления крупных плавающих загрязнений и взвешенных примесей. Осуществляется через решетки и сита с размером ячеек от 0,005 мм до 1 см;
  • первичное отстаивание – процесс осаждения взвешенных веществ под действием силы тяжести, также приводящий к осветлению воды. Зависит от скорости течения, относительной плотности и диаметра частиц. Из воды удаляются частицы размером более 100 мкм (10 -4 м);
  • коагуляция – процесс укрупнения коллоидных и диспергированных частиц при введении реагентов – коагулянтов, происходящий вследствие слипания частиц под действием сил молекулярного притяжения. Слипшиеся частицы в дальнейшем осаждаются. Из воды удаляются взвешенные вещества и значительная часть микроорганизмов, что приводит к ее глубокому осветлению.

Умягчение воды – процесс удаления из воды растворённых солей щёлочноземельных металлов (Сa 2+ и Mg 2+), обусловливающих жёсткость воды. Соли жёсткости могут удаляться четырьмя способами:

  • реагентное умягчение – добавление реагентов, увеличивающих концентрацию анионов; в результате образуются малорастворимые соли с ионами Сa 2+ и Mg 2+ , впоследствии выпадающие в осадок. Процессы осаждения осуществляются в отстойниках и осветлителях. Осаждение образующихся хлопьев происходит очень медленно, поэтому оборудование имеет низкую производительность. Реагентные методы используются только в подготовке воды для технических нужд, т. к. вода в результате приобретает сильнощелочную реакцию;
  • ионный обмен – процесс, при котором присутствующие в воде анионы и катионы замещаются другими ионами при прохождении через слой ионообменного материала. Обмен катионов Ca 2+ и Mg 2+ на Na + приводит к умягчению воды. Анионный состав воды при этом не меняется, и раствор остается нейтральным;
  • электрохимическая обработка – прохождение воды через межэлектродное пространство, при котором вследствие электролиза образуются менее растворимые формы солей жёсткости;
  • мембранная фильтрация – пропускание воды через нанофильтрационные и обратноосмотические мембраны под высоким давлением, в результате чего происходит селективное удержание многозарядных и крупных ионов. Удаляются также взвешенные вещества, коллоиды, бактерии, вирусы и пр. Содержание солей жёсткости уменьшается в 10–50 раз.

Обезжелезивание воды. В воде поверхностных источников железо, как правило, находится обычно в форме органоминеральных коллоидных комплексов, в подземных водоисточниках – в форме растворённого бикарбоната двухвалентного железа. Для обезжелезивания воды из поверхностных источников используются реагентные методы с последующей фильтрацией в сочетании с предварительной обработкой воды:

  • аэрация окисляет двухвалентное железо кислородом воздуха, при этом из воды удаляется углекислота, что ускоряет процесс образования гидроксида железа;
  • коагуляция и осветление используются для железа, находящегося в форме взвесей и коллоидно-дисперсного вещества (см. выше);
  • обработка реагентами-окислителями (хлор, гипохлорит натрия или кальция, озон, перманганат калия) приводит к разрушению гуматов и других железосодержащих органических соединений. В результате формируются легко гидролизующиеся неорганические соли трёхвалентного железа.

Обезжелезивание подземных вод осуществляются также путем мембранной фильтрации (микро-, ультра-, нанофильтрации или обратного осмоса).

Обеззараживание – процесс уничтожения вирусов и патогенных микроорганизмов (бактерий, простейших) дезинфицирующими агентами или/и физическими воздействиями. Эффективность обеззараживания воды напрямую зависит от степени её предварительной очистки, т. к. удаление из воды коллоидных и диспергированных частиц увеличивает подвод дезинфицирующего вещества к целевым объектам обеззараживания – бактериям, вирусам, простейшим. Для обеззараживания применяются следующие методы:

На практике чаще всего используется сочетание различных методов обеззараживания, позволяющих снизить отрицательный эффект одних и усилить достоинство других.

Дегазация воды . Присутствие в воде растворённых газов – кислорода, свободной углекислоты и сероводорода обусловливает её коррозионные свойства. Используются следующие способы дегазации воды:

  • химические способы заключаются в добавлении реагентов, которые связывают растворённые в воде газы, или в пропускании воды через фильтры, загруженные стальными стружками;
  • физические способы дегазации – наиболее распространены аэрация и кипячение воды. Для удаления из воды кислорода используют кипячение, для удаления свободной углекислоты и сероводорода – аэрацию.

Коррекция качества питьевой воды . Ряд важных для организма макро- и микроэлементов (йод, фтор, кальций, магний и т.д.) поступает в организм человека вместе с питьевой водой. Однако часто вода из водоисточника не содержит такие вещества в необходимом количестве. Для корректировки состава питьевой воды применяются следующие методы:

  • обогащение фтором (фторирование) – доступный и безопасный метод профилактики заболевания кариесом путём повышения концентрации фтора до 0,6–1,1 мг/л;
  • обогащение йодом (йодирование). Недостаток йода в ряде случаев является причиной развития врождённых аномалий, повышенной перинатальной смертности, снижения умственных способностей у детей и взрослых, глухонемоты. Содержание йода в питьевой воде должно находиться на уровне 40–60 мкг/л;
  • обогащение селеном. Селен является антиоксидантом, усиливает иммунитет и процессы обмена веществ в организме. Добавление селена в питьевую воду применяется как сопутствующий фактор снижения риска развития онкологических заболеваний, сердечно-сосудистых патологий, артрита, преждевременного старения населения;
  • обогащение кальцием. Недостаток кальция приводит к кардиоваскулярным заболеваниям (гипертонии, коронарной и ишемической болезней сердца, инсульта), рахиту у детей, остеомаляции, нарушению процессов свертываемости крови;
  • обогащение магнием. Недостаток магния проводит к повышению тяжести течения сердечно-сосудистых заболеваний и младенческой смертности;
  • обогащение гидрокарбонат-ионами применяется для коррекции водородного показателя воды (рН) и повышения её щёлочности.


Похожие публикации

Бизнес магия и секреты продаж Магия в бизнесе и карьере
Главный инженер: обязанности
Основа операторского фотомастерства: умение видеть и выбирать
Снегурочка (русская народная сказка)
Анализ существующей системы управления материальными потоками
Образец резюме ветеринара
Как члену строительного кооператива оформить земельный участок для строительства индивидуального жилого дома, образованный путем раздела земельного участка, предоставленного жск Процесс возведения жил
В каких случаях нельзя уволить сотрудника
Курс лекций по дисц. общий менеджмент. Основы менеджмента - краткое изложение Менеджмент в профессиональной деятельности лекции
Мероприятия по совершенствованию организации деятельности службы приема и размещения Проблемы внедрения
 информационных технологий в
 транспортных компаниях